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ABSTRACT 
The global agricultural sector faces persistent challenges from plant 
diseases, which threaten food security, economic stability, and 
sustainable agriculture. Traditional methods of disease diagnosis, 
reliant on manual scouting by human experts, are often slow, labour-
intensive, and prone to error. The advent of deep learning, a subset of 
artificial intelligence, has catalysed a paradigm shift in how plant 
diseases are detected and diagnosed. This paper surveys this 
transformation by synthesising recent advancements in deep learning 
architectures, primarily Convolutional Neural Networks, as well as 
Transformers and generative models, for automated plant disease 
detection and classification using visual data (e.g., leaf images). The 
paper meticulously outlines the standard pipeline, encompassing data 
acquisition, preprocessing, model training, and deployment. 
Furthermore, it highlights critical challenges such as the need for large, 
curated, and diverse datasets, model generalisation across different 
environmental conditions, and the path towards real-world deployment 
in the form of AI-powered Plant Doctor systems. Finally, future 
research directions, including the integration of multimodal data and 
explainable AI, are critically discussed. Findings show that deep 
learning is poised to revolutionise plant disease management, 
enabling precise, rapid, and scalable diagnostics for farmers 
worldwide. 

 
INTRODUCTION 
  Plant diseases are a significant cause of 
crop yield loss, estimated to result in annual global 
economic damages exceeding $200 billion 
(Savary et al. 2019). Three primary elements 
contribute to the development of diseases in 
plants: a conducive environment, the presence of 
a pathogen, and the host plant itself. Typically, 
symptoms of diseases first appear at the lower 
parts of the plant and then progress upwards. 
Once infection occurs, many diseases can spread 
rapidly throughout the crop, making regular crop 
monitoring essential. Early intervention can help 
control and reduce the proliferation of the disease.  

  In some scenarios, diseases may 
become apparent only later in the growing season, 
often after the pollination stage. Plant diseases 
vary widely and affect different organs, but those 
that manifest on leaves, classified as foliar 
diseases, tend to present the most recognisable 
symptoms that can be visually identified by plant 
pathologists. Notably, fungal infections are a 
major cause, responsible for nearly half of crop 
yield losses (Hosain et al. 2024). As a result, 
contemporary research often relies on analysing 
images of plant leaves using computer vision, 
machine learning, and deep learning techniques 
to detect diseases (Ochijenu et al. 2025) 
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  An effective diagnosis framework for 
plant diseases involves not only early detection 
within the growing season but also the ability to 
identify multiple diseases across various crops 
simultaneously, gauge the disease severity, 
determine the optimal amount of pesticide to 
apply, and suggest management practices to limit 
the disease spread (Hosain et al. 2024. Accurate 
identification of plant diseases plays a crucial role 
in precision agriculture and plant phenotyping, 
both fields that depend heavily on data, 
technology, and information (Li et al. 2025). 
Hence, early and accurate detection is the first 
and most crucial step in implementing effective 
management strategies to mitigate low plant 
yields. For centuries, diagnosis has depended on 
the expertise of agricultural pathologists and 
farmers visually inspecting plants for symptoms. 
This method, while valuable, is inherently limited 
by its subjectivity, scalability, and the scarcity of 
experts, especially in remote regions.  
  To address these limitations, 
researchers have turned to image processing 
approaches using plant images. One of the 
pioneering works in this field, dating back to 1983, 
employed black-and-white imaging of leaves from 
potted tomato and blackened fern plants for 
automated disease assessment (Lindow & Webb, 
1983). Additionally, image analysis methods have 
been applied to quantify diseases, such as streak 
disease in corn (Martin et al. 1998), with 
computerised approaches proving more precise 
than traditional visual methods. Over the last three 
decades, image processing has gained traction in 
plant disease diagnosis because it offers an 
objective approach. Nevertheless, this approach 
requires manual extraction of features, which is 
time-consuming and can be subjective, as 
different researchers might prioritise different 
features. 
  Approximately two decades ago, 
machine learning began to be explored for 
identifying plant diseases. Early studies reviewed 
the potential of machine learning in agriculture, 
with techniques like support vector machines 
(SVM), random forests, and K-nearest neighbours 
(KNN) being used to detect diseases on crops 
such as tomato and soybean. These methods 

were employed to both detect diseases and 
assess their severity. For example, SVM, KNN, 
and Naïve Bayes classifiers were utilised for 
detecting tomato powdery mildew, while 
forecasting models were proposed for predicting 
disease outbreaks (Bhatia et al. 2022). Despite 
these advancements, classical machine learning 
still depended heavily on manually extracted 
features for training, which was a labour-intensive 
step.  
  Moreover, both image processing and 
machine learning approaches often performed 
well only under specific conditions and had limited 
generalizability. Hence, a paradigm shift toward 
deep learning techniques. Unlike classical 
approaches, deep learning automates feature 
extraction and delivers higher accuracy (Idakwo et 
al. 2024). This approach has become more 
prevalent due to advances in computational 
power, data storage, and the availability of large 
annotated datasets. Since the breakthrough 
success of deep learning models at the ImageNet 
competition in 2012, researchers from diverse 
fields have increasingly adopted these techniques 
for plant disease detection (Ferentinos et al., 
2018). Furthermore, the digital revolution in 
agriculture, fueled by the proliferation of 
smartphones and drones, has generated vast 
amounts of visual data from fields. 
  Concurrently, breakthroughs in the field 
of deep learning (DL), particularly in computer 
vision, have provided the tools to analyse this data 
with superhuman accuracy and speed. This 
confluence has given rise to a new paradigm: the 
AI-powered Plant Doctor. These systems leverage 
deep learning models to automatically analyse 
images of plants and provide instant, preliminary 
diagnoses, much like a medical doctor analysing 
an X-ray. The contributions of this paper are 
highlighted:  

1. Traces the chronological shift from 
traditional techniques to modern deep 
learning-based approaches in plant 
disease detection. 

2. Provides a systematic overview of the 
dominant deep learning architectures and 
methodologies employed in recent 
literature. 

http://www.atbuftejoste.net/
mailto:bakarihenry341i@gmail.com


 
                                 JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025 
                              E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng 

Corresponding author: Monday Abutu Idakwo 
  mondiouf@gmail.com  
 Department of Computer Engineering, Faculty of Engineering, Federal University of Lokoja.  
© 2025. Faculty of Technology Education. ATBU Bauchi. All rights reserved 

291 

3. Outlines the standard development 
pipeline for building a DL-based plant 
disease diagnosis system, from data 
acquisition to model deployment. 

4. Identifies and critically discusses the 
major challenges and limitations that 
hinder progress in the field. 

5. Proposes future research directions 
aimed at addressing these challenges and 
enabling the development of scalable, 
automated Plant Doctor systems. 

 
PLANT DISEASES SYMPTOMS AND TYPES 
  It is to understand the various plant 
disease types and symptoms before developing 
any model that can effectively detect and forecast 
the presence of disease. Plant diseases arise from 
abnormal behaviour or physiological changes, 
caused by either biotic or abiotic factors (Picon et 
al. 2019), as illustrated in Figure 1. 
 

 
Figure 1: Plant Classification 
 
  Biotic diseases result from infectious 
agents, while abiotic diseases are caused by non-
infectious factors. Abiotic diseases are generally 
less hazardous and often preventable due to their 
non-transmissible nature. This study focuses 
specifically on biotic diseases. 

1. Bacterial Disease: Bacterial infections in 
plants typically start as small, water-
soaked green spots that enlarge and 
eventually turn into dry, dead lesions, as 
illustrated in Figure 2(a). Examples include 
black or brown leaf spots and yellow halos 
of similar size. These blemishes often 
appear as speckles under dry conditions. 
In brinjal crops, bacterial wilt is particularly 
destructive, causing the entire plant to 
collapse (Ayaz et al. 2023). 

2. Viral Disease: Viral infections are among 
the most challenging plant diseases to 
study. Symptoms may be subtle and mimic 
those of herbicide damage or nutrient 
deficiencies, making detection difficult 

(Poudel et al. 2021). Viral diseases are 
commonly transmitted by insects such as 
beetles, leafhoppers, aphids, and 
whiteflies. A notable example is the mosaic 
virus, which produces green or yellow 
streaks on the foliage, as illustrated in 
Figure 2(b). 

3. Fungal Disease: Fungal infections can 
affect multiple parts of a plant, including 
causing sclerotium wilt, crown rot, stem 
rust, eyespot (on stems or sheaths), rust, 
leaf blight, ergot (on spikes), carnal bunt, 
and black point (on seeds). Late blight, 
caused by Phytophthora species, typically 
appears on older leaves as grey-green, 
water-soaked spots, as shown in Figure 
2(c). This fungus thrives under fluctuating 
wet and dry conditions, and as the disease 
progresses, the spots darken and white 
fungal growth appears on the surface 
(Ayaz et al. 2023). Early blight, caused by 
the Alternaria species, manifests on older 
leaves as small, brown spots with a 
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characteristic bull’s-eye pattern of 
concentric rings, as shown in Figure 2(d). 
Rust fungi develop on mature leaves, 
forming lesions on the upper surface that 
turn black after initially appearing green-
yellow, as depicted in Figure 2(e). 

 

 
Figure 2: Various Plant Diseases 
 
THE RISE OF DEEP LEARNING 

Early attempts at automated disease 
detection used traditional machine learning 
techniques like SVMs and k-Nearest Neighbours 
(k-NN). The conventional approach employed in 
traditional image recognition processing 
technology to identify plant diseases is shown in 
Figure 3.  

 

 
Figure 3: Classical Approach in Image Processing 
 

Accurate identification of plant diseases 
through leaf images basically involves several 
stages. The process begins with image acquisition 
and preprocessing, followed by feature extraction, 
and concludes with applying classifiers for disease 
recognition. 
 
Image Acquisition 

The initial step is the acquisition of 
image datasets. Several publicly available 
benchmark datasets support plant disease 
research. While some are from a controlled 

environment, others are from the field. 
Unfortunately, the performance of machine 
learning (ML) models is significantly affected by 
the quality and nature of the input data, such as 
whether images are captured in controlled 
laboratory settings or in natural field conditions. 
Images taken under controlled conditions usually 
involve a single leaf placed against a uniform, 
artificial background, as seen in datasets like 
PlantVillage. These controlled datasets often 
enable high accuracy in classification tasks, but 
collecting such data is both time-intensive and 
expensive.  

In contrast, field images present a far 
greater challenge due to their complexity, which 
includes multiple leaves, various plant parts, 
diverse lighting and shading, as well as 
heterogeneous backgrounds and ground textures 
(Idakwo et al., 2024). Research shows that ML 
models trained solely on laboratory images 
perform poorly when applied to field images, 
rendering them ineffective for practical field 
applications. Conversely, models trained on field 
images tend to perform reasonably well when 
tested with laboratory images. Including field 
images in the training process substantially 
improves model performance, but it is still 
recommended to evaluate models with images 
from different data sources for robust results. 
Some of the widely known public plant disease 
datasets are PlantDoc (Ochijenu et al,2025), 
PlantVillage (Ahmad et al., 2024), Cassava, Hops, 
Cotton, and Rice. 
 

1. Cassava dataset contains five classes, 
including cassava mosaic disease, 
bacterial blight, brown streak, green 
mite, and healthy samples, with images 
collected directly from field conditions 
(Oyewole et al. 2021). This dataset can 
be used to train a deep learning model 
for real field cassava disease detection. 
The images in the respective disease 
class are imbalanced, as shown in 
Table 1.  
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Table 1: Cassava Dataset Summary 

Class Images 

Healthy 316 
Healthy blight 466 
Brown Streak 1,443 
Green Mite 773 
Mosaic Disease 2,658 

 
2. Cotton dataset comprises 2,137 

images of cotton leaves at different 
stages of health and disease, collected 
from the National Cotton Research 
Institute field in Gazipur. The images 
cover both healthy leaves and those 
affected by bacterial blight, curl virus, 
herbicide-induced damage, leaf hopper 
(jassids) infestation, reddening, and 
variegation. The images were taken 
using a Redmi Note 11s smartphone in 
three resolutions: 3000 × 4000, 2239 × 
2239, and 1597 × 1597 pixels, providing 
variation in spatial detail. Data collection 
was carried out through field surveys 
between October 2023 and January 
2024, under the supervision of domain 
experts to ensure accurate disease 
identification. Furthermore, images 
were taken under diverse environmental 
conditions and at different growth 
stages of cotton plants, enabling a 
comprehensive representation of 
natural disease manifestations in field 
settings (Bishshash et al. 2024). 

3. Rice dataset captures four disease 
types: bacterial blight, blast, brown spot, 
and tungro, collected in natural field 
environments with image distributions 
as presented in Table 2. 

 
Table 2: Rice Dataset Summary 

Leaf Disease Images 

Bacterial Blight 1584 
Blast 1440 
Brown Spot 1600 
Tungro 1308 
Total 5932 

 
4. PlantDoc 

Unlike PlantVillage, whose images are 
from a controlled environment, the PlantDoc major 
images were obtained from the real agricultural 
field environment. The PlantDoc contains 2,598 
images covering 17 plant diseases across 13 crop 
types (Ochijenu et al. 2025). The diversity in 
acquisition settings provides opportunities to 
develop more robust deep learning models for 
disease detection. Nevertheless, certain images 
depict multiple infected leaves or even entire 
plants, which may hinder the models’ ability to 
capture distinctive disease features. Moreover, 
PlantDoc is highly imbalanced, with many classes 
containing fewer than 200 samples, as outlined in 
Table 3. Due to these limitations, achieving high 
accuracy with deep learning approaches on this 
dataset is taxing.  
 
Table 3: PlantDoc Dataset Summary 

Crop Disease Images 

Apple Healthy 91 
 Scab 93 
 Rust 89 
Bell pepper Healthy 61 
 Leaf Spot 71 
Blueberry Healthy 117 
Cherry Healthy 57 
Corn Leaf Blight 192 
 Grey Leaf Spot 68 
 Rust 116 
Grape Healthy 69 
 Black Rot 64 
Peach Healthy 112 
Potato Early Blight 117 
 Late blight 105 
Raspberry Healthy 119 
Soybean Healthy 65 
Squash Powdery Mildew 130 
Strawberry Healthy 96 
Tomato Healthy 63 
 Bacterial Spot 110 
 Early Blight 88 
 Late Blight 111 
 Leaf Mold 91 
 Septoria Leaf Spot 151 
 Mosaic Virus 54 
 Yellow Virus 76 
 Spider Mite 2 
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5. PlantVillage dataset contains 54,309 
images captured under controlled 
laboratory conditions, covering 38 
disease classes across 14 plant species 
such as apple, corn, grape, tomato, and 
potato. It includes both healthy and 
diseased samples, e.g., apple scab, 
grape black rot, corn leaf blight, and 
tomato yellow curl virus. Since its 
release, it has become the most widely 
utilised resource for training and 
developing deep learning models aimed 
at plant disease detection and severity 
assessment (Ahmad et al.2024). 
Nevertheless, because the dataset 
does not fully reflect real-field 
conditions, models trained solely on 
these images often struggle to 
generalise effectively to field-based 
data (Ochijenu et al. 2025). Another 
limitation of PlantVillage is its class 
imbalance (Idakwo et al. 2024). Visual 
inspection has also revealed 
overlapping features between certain 
disease categories. For instance, some 
images labelled as Grey Leaf Spot 
(GLS) also show symptoms of Northern 
Leaf Blight (NLB), which can introduce 
confusion and degrade the performance 
of deep learning classifiers. The 
PlantVillage dataset summary is given 
in Table 4. 
 

Table 4: PlantVillage Dataset Summary 

Crop Disease Images 

Apple Healthy 1,645 
 Black Rot 621 
 Cedar Apple Rust 275 
 Apple Scab 630 
Blueberry Healthy 1,502 
Cherry Healthy 854 
 Powdery Mildew 1,052 
Corn Healthy 1,162 
 Grey Leaf Spot 513 
 Common Rust 1,192 
 Northern Leaf Blight 985 
Grape Healthy 423 
 Black Rot 1,180 

Crop Disease Images 
 Black measles 1,383 
 Isariopsis Leaf Spot 1,076 
Orange Citrus Greening 5,507 
Peach Healthy 360 
 Bacterial Spot 2,297 
Bell Pepper Healthy 1,478 
 Bacterial Spot 997 
Potato Healthy 152 
 Early Blight 1,000 
 Late Blight 1,000 
Raspberry Healthy 371 
Soybean Healthy 5,090 
Squash Powdery Mildew 1,835 
Strawberry Healthy 456 
 Leaf Scorch 1,109 
Tomato Healthy 1,592 
 Bacteria Spot 2,127 
 Early Blight 1,000 
 Late Blight 1,909 
 Leaf Mold 952 
 Septoria Leaf Spot 1,771 
 Spider Mites 1,676 
 Target Spot 1,404 
 Yellow Leaf Curl 5,357 
 Mosaic Virus 373 

 
6. Hops dataset consists of five 

categories, including downy mildew, 
powdery mildew, nutrient deficiency, 
pest infection, and healthy leaves, often 
with complex, nonuniform backgrounds 
(Arora & Gautam, 2023). 

7. Cotton dataset comprises 2,137 
images of cotton leaves at different 
stages of health and disease, collected 
from the National Cotton Research 
Institute field in Gazipur. The images 
cover both healthy leaves and those 
affected by bacterial blight, curl virus, 
herbicide-induced damage, leaf hopper 
(jassids) infestation, reddening, and 
variegation. The images were taken 
using a Redmi Note 11s smartphone in 
three resolutions: 3000 × 4000, 2239 × 
2239, and 1597 × 1597 pixels, providing 
variation in spatial detail. Data collection 
was carried out through field surveys 
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between October 2023 and January 
2024, under the supervision of domain 
experts to ensure accurate disease 
identification. Furthermore, images 
were taken under diverse environmental 
conditions and at different growth 
stages of cotton plants, enabling a 
comprehensive representation of 
natural disease manifestations in field 
settings (Bishshash et al. 2024). 

8. iNaturalist & PlantCLEF: Large-scale 
datasets that include a wider variety of 
plant species and diseases in natural 
environments. It contains about 859,000 
images covering more than 5,000 
species of plants and animals. It 
includes many visually similar species 
photographed in diverse environments 
across the globe. The images come 
from different types of cameras, vary in 
quality, show a significant imbalance 
among classes, and have been 
validated through contributions from 
multiple citizen scientists (Van Horn et 
al. 2018). 

 
In addition to these standard datasets, 

some researchers also construct custom datasets 
for their studies.  
 
Preprocessing 

Preprocessing is crucial for image 
quality enhancement and preparing data for 
analysis. Basic preprocessing steps entail colour 
space conversion, resizing to a uniform scale, 
noise reduction, morphological adjustments, and 
disease region segmentation. Noise reduction can 
be achieved through filters such as Wiener, 
median (Park et al. 2020), or Gaussian (Tripathi et 
al. 2025). Multiple colour models, including RGB, 
HSV, CIE L*a*b* (Sghair et al. 2017), and YCbCr, 
are frequently applied for effective image analysis. 
To isolate the region of interest (ROI), 
segmentation methods such as colour 
thresholding (Chuanlei et al. 2017), Sobel edge 
detection (Yusoff et al. 2018), Otsu’s method 
(Dutta et al. 2022), and K-means clustering 
(Javidan et al. 2023) are often used. 

 
Feature Extraction 

Feature extraction transforms visual 
disease patterns into numerical representations, 
enabling efficient classification. An ideal feature 
set should capture the distinct characteristics that 
separate one disease class from another. 
Features are commonly grouped into colour, 
texture and shape as depicted by Figure 3. 

 
Figure 3 Common Features Categories for Plant 
Disease Detection Methods 
 
Colour features-Based Disease Detection. 

This method focuses on extracting 
chromatic attributes from infected regions of 
leaves. For example, Sghair et al. (2017) explored 
multiple colour models for plant disease detection. 
The plant's leaf images were converted into 
YCbCr, HSI, and CIE L*a*b* spaces, followed by 
noise reduction using median filtering. 
Segmentation of the diseased spots was carried 
out using Kapur’s thresholding, applied 
specifically to the Cr component of YCbCr, the H 
component of HSI, and the A component of CIE 
L*A*B*.  Similarly, Singh (2018) proposed a 
colour-slicing approach for detecting blast disease 
in paddy. In this approach, RGB images were first 
converted into the HSI colour space, and then the 
diseased regions were isolated through colour 
slicing while suppressing the unaffected parts.  

When compared with edge-based 
boundary detection techniques such as Sobel and 
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Canny, this approach achieved an accuracy of 
96.6%. Furthermore, Khan et al. (2019) proposed 
preprocessing, spot segmentation with feature 
extraction, and classification as the new stage 
pipeline in identifying and recognising apple leaf 
diseases. In the preprocessing stage, a hybrid 
enhancement technique was employed by 
combining 3D box filtering, decorrelation, 3D 
Gaussian, and 3D median filters to improve the 
quality of diseased regions on the leaves. Lesion 
segmentation is then carried out using a strong 
correlation-based approach, further refined 
through Expectation Maximisation (EM) 
segmentation.  

For feature representation, colour, 
colour histogram, and Local Binary Pattern (LBP) 
features were combined using a parallel fusion 
strategy. These features were subsequently 
optimised with a genetic algorithm before 
classification was performed using a One-vs-All 
Multi-class Support Vector Machine. The 
methodology was evaluated on the PlantVillage 
dataset across four categories: healthy leaves, 
Black rot, Rust, and Scab. The results indicated 
that the proposed approach achieved improved 
classification accuracy compared to existing 
methods. The study highlighted that effective 
preprocessing contributes significantly to feature 
quality, thereby enhancing overall recognition 
performance. Basavaiah and Arlene (2020) 
focused on creating an efficient approach for 
detecting tomato leaf diseases with an emphasis 
on boosting classification accuracy while 
minimising computational cost.  

The key innovation lies in combining 
different feature sets to enhance recognition 
performance. Specifically, colour histograms, Hu 
Moments, Haralick features, and Local Binary 
Patterns were extracted and applied in both 
training and testing stages. For classification, 
decision tree and random forest algorithms were 
employed. Experimental findings revealed that 
random forest delivered superior results 
compared to decision trees, achieving an 
accuracy of 94%, while the decision tree method 
reached 90%. 

Ahmad et al. (2021) introduced an 
automated system for detecting plant diseases 

through a structured process comprising image 
pre-processing, segmentation of infected regions, 
extraction of colour and texture features using the 
Grey-Level Co-occurrence Matrix (GLCM), 
feature selection, and classification. A total of six 
colour and twenty-two texture features were 
evaluated, with support vector machines applied 
for one-vs-one disease classification. The 
approach achieved a high accuracy of 98.79% 
(±0.57) under tenfold cross-validation, while 
testing on a self-collected dataset yielded 82.47% 
accuracy for disease recognition and 91.40% for 
differentiating healthy from infected leaves. Patil et 
al. (2024) presented a content-based image 
retrieval (CBIR) framework designed for detecting 
and classifying leaf diseases by combining colour 
and texture features. The system applied 
advanced image processing techniques to 
enhance accuracy. The developed system was 
tested primarily on maize leaves affected by blight 
and rust, two diseases known for their prevalence 
and impact on yield. Experimental evaluation 
shows a detection accuracy of 98.33%, 
demonstrating its reliability for precision 
agriculture. The dual use of texture and features 
enhances disease characterisation, enabling the 
system to distinguish between multiple diseases 
with high precision.  

Li et al (2025) presented an automated 
system for identifying apple leaf diseases using 
image processing, artificial intelligence, and ant 
colony optimisation (ACO). The method involved 
background removal, diseased area detection, 
extraction of texture, colour, and shape features, 
feature selection with ACO, and final classification 
using an SVM. The results showed an overall 
accuracy of 92.5%, with texture features 
contributing most to performance. The approach 
demonstrates an effective and scalable solution 
for accurate disease detection in precision 
agriculture. Nevertheless, colour-based 
approaches often struggle with reliability because 
leaf colour can be influenced by external factors 
such as lighting conditions, camera quality, and 
background noise. In addition, different diseases 
may produce similar colour changes, making it 
difficult to distinguish between them using colour 
information alone. As a result, this method may 
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lead to reduced accuracy and poor generalisation 
when applied in diverse real-world environments. 
 
Texture and Shape-Based Features for 
Disease Detection 

The shape-based characteristics of 
leaves are another feature used in detecting plant 
disease.  Islam et al. (2017) proposed a method 
for detecting potato diseases (late blight, early 
blight, and healthy leaves) by first masking the 
background and healthy green regions using 
thresholds in the Lab* colour space. The region of 
interest was then isolated, and texture features 
from the GLCM (e.g., contrast, correlation, 
homogeneity, energy) along with statistical 
features (mean, entropy, standard deviation, 
skewness) were extracted. A multiclass SVM 
classifier was trained using the PlantVillage 
dataset; however, challenges included difficulties 
in threshold selection, a small dataset size, and 
uniform backgrounds, which limited its real-world 
applicability. Similarly, Bhimte et al. (2018) applied 
K-means clustering for segmentation, followed by 
wavelet transforms, PCA, and machine learning 
classifiers (BPNN, SVM) to detect cotton plant 
diseases. Their models achieved accuracies of 
97% and 98.46%, respectively, but were trained 
on limited datasets, and feature selection 
remained a significant challenge. 

Zhang et al. (2018) introduced a hybrid-
based approach for plant leaf disease 
segmentation and recognition by integrating 
superpixel clustering, K-means clustering, and a 
pyramid of histograms of oriented gradients 
(PHOG). In the framework, diseased leaf images 
were first divided into compact superpixels, after 
which K-means clustering was applied to isolate 
lesion regions within each superpixel. PHOG 
features were then extracted from the colour 
components and grayscale version of the 
segmented images, and the resulting descriptors 
were combined into a single feature vector. 
Experimental validation on two plant disease 
image datasets demonstrated that the method 
achieved effective segmentation and accurate 
recognition, highlighting its potential as a practical 
solution for smart agricultural monitoring.  

Furthermore, Zang et al. (2019) 
employed a hybrid clustering technique, where 
colour images of leaves were first divided into 
compact, uniform superpixels. These superpixels 
served as clustering cues that enhanced the 
efficiency and speed of the expectation 
maximisation (EM) algorithm. Using EM, diseased 
regions were then accurately separated from each 
superpixel. Experimental evaluations, along with 
comparisons to existing methods, confirmed that 
this technique achieved fast and precise 
segmentation, making it highly effective and 
valuable for practical applications in plant disease 
detection. To resolve the redundancy or irrelevant 
features which often reduce the accuracy and 
efficiency of plant disease models, Kumar et al. 
(2020) proposed an Exponential Spider Monkey 
Optimisation (Exponential SMO) approach for 
selecting the most relevant features from SPAM-
generated data. The refined feature set was 
processed using an SVM to distinguish between 
healthy and diseased plants. Experimental results 
show that the Exponential SMO enhances both 
computational efficiency and classification 
accuracy.  

Mathew et al. (2021) developed an 
approach for classifying three major foliar 
diseases in banana plants using local texture 
features. The process begins with image 
enhancement and colour-based segmentation to 
isolate diseased regions, followed by conversion 
of the segmented images into transform domains 
through DWT, DTCWT, and Ranklet transforms. 
Texture features were extracted using LBP and its 
variants (ELBP, MeanELBP, and MedianELBP) 
and evaluated with five different classifiers under 
a ten-fold cross-validation scheme. Results show 
that ELBP features derived from the DTCWT 
domain achieved the highest performance, 
recording 95.4% accuracy alongside strong 
precision, sensitivity, specificity, and F-score 
values. The combination of DTCWT and ELBP 
features significantly outperforms conventional 
feature extraction techniques, enabling accurate 
and early detection of fungal diseases in banana 
leaves. 

Archana et al. (2022) presented a 
modified K-means segmentation approach that 
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isolated infected regions in rice leaves, followed 
by the extraction of colour, texture, and shape 
features. A novel SVM-based probabilistic neural 
network (NSVMBPNN) was employed for 
classification, outperforming naïve Bayes, SVM, 
and PNN. Validated with fivefold cross-validation, 
the method achieved high accuracy, with up to 
99.20% for healthy leaves and above 95% for 
various rice diseases. Wang et al. (2023) 
investigated early detection of grey mould in 
strawberries using hyperspectral imaging. 
Spectral features, vegetation indices, and textural 
features were extracted and refined through 
feature selection approaches. Machine learning 
models (ELM, SVM, and KNN) achieved strong 
results, with combined feature models reaching 
93.33–96.67% accuracy. The study confirms that 
integrating multiple features significantly improves 
early and accurate recognition of grey mould in 
strawberry leaves. Ahmad et al. (2024) introduced 
a new feature descriptor, the Local Triangular-
Ternary Pattern (LTriTP), for detecting plant leaf 
diseases from images.  

The method uses triangular shape 
descriptors and a dynamic threshold to capture 
detailed texture information, while a Triangular 
Histogram of Gradient (T-HOG) ensures 
orientation invariance by analysing gradient 
changes in multiple directions. By fusing LTriTP 
and T-HOG features, the approach improves 
disease recognition across six tomato leaf disease 
classes from the PlantVillage dataset. Compared 
with established techniques such as Local Binary 
Pattern and Local Ternary Pattern, the proposed 
method achieved superior classification accuracy, 
ranging from 94.50% to 97.80%, with error rates 
as low as 2.03%. Tripathi et al. (2025) presented 
a hybrid classification model that utilises a stage-
based pipeline: preprocessing with Gaussian 
filtering, segmentation using the MBIRCH 
framework, feature extraction (including GLCM, 
ILGBHS, colour, shape, and deep features via 
VGG16 and AlexNet), and classification. The 
hybrid model combined Bi-GRU and DCNN with 
transfer learning for the plant disease predictions.  

Overall, shape- and texture-based disease 
detection methods reveal several recurring issues. 
Preprocessing steps are often extensive, which 

adds to the overall complexity of the process. 
Segmenting diseased regions in cluttered or 
natural backgrounds also remains a significant 
challenge. In addition, feature extraction and 
selection tend to be labour-intensive, particularly 
when working with large datasets. Furthermore, 
many studies rely on small, uniform datasets with 
limited disease categories, thereby restricting the 
generalisability of the results. Generally, the 
classical machine methods in plant disease 
symptom detection from their image often face 
challenges in recognising subtle disease 
symptoms, detecting early-stage infections, and 
handling complex, high-resolution images 
effectively (Idakwo et al. 2024). Thus, it was often 
brittle and failed to generalise to complex, real-
world conditions. The breakthrough came with the 
application of Convolutional Neural Networks 
(CNNs), which automatically learn hierarchical 
and discriminative features directly from raw pixel 
data. The seminal work of Ferentinos (2018), 
which utilised a large dataset of leaf images 
(PlantVillage), demonstrated that CNNs could 
achieve accuracy exceeding 99% in classifying a 
wide range of diseases under controlled 
conditions. This study served as a proof-of-
concept and ignited widespread research in the 
area. 
 
Identification and Classification 

In every plant disease detection system, 
identification and classification are the two 
interrelated tasks that are commonly performed. 
Identification entails determining whether a plant 
is healthy or diseased, while classification assigns 
the diseased sample to a specific category, such 
as bacterial blight, grey mildew, or leaf curl in 
cotton plants. These processes form the 
foundation of intelligent agricultural monitoring 
systems, where accurate diagnosis directly 
influences treatment strategies, yield protection, 
and resource management. 

To evaluate the effectiveness of 
identification and classification models, a range of 
performance metrics is employed. The confusion 
matrix provides a detailed account of correct and 
incorrect predictions across all classes, enabling 
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the detection of patterns in misclassification, 
especially between visually similar diseases.  

1. Accuracy evaluates the overall proportion 
of correctly identified samples, making it 
useful for the initial healthy-versus-diseased 
identification stage. However, accuracy 
alone may be insufficient in cases of class 
imbalance, where certain diseases occur 
less frequently. Accuracy is mathematically 
expressed as given equation (1) 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                        (1)               

Where Acc refers to the accuracy 
            TP is a true positive   
            TN is a true negative 
            FP is a false positive 
            FN is a false negative                                                                                         
2. Precision is particularly relevant during 

classification, as it quantifies how many 
samples predicted as belonging to a 
specific disease category are actually 
correct. This reduces the likelihood of false 
alarms. Precision is mathematically given 
by equation (2) 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100                     (2) 

        Where Pre is precision 
3. Sensitivity or Recall: On the other hand, 

recall (sensitivity) is essential in disease 
identification, as it ensures that the majority 
of diseased plants are correctly detected, 
minimising the risk of overlooking infections. 
The recall is expressed as given in equation 
(3) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100                     (3) 

Where Rec is Recall 
 
4. F1 score: The F1 score, as the harmonic 

mean of precision and recall, provides a 
balanced assessment, which is especially 
valuable when dealing with multiple disease 
classes that exhibit similar visual features. 
The F1-score is mathematically expressed 
in equation (4) 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒

=
2 ∗ (𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐)

𝑃𝑟𝑒 + 𝑅𝑒𝑐
                     (4) 

  

 
Deep Learning Model-Based Plant Disease 
Detection 

In recent years, deep learning (DL) has 
experienced rapid growth, particularly in computer 
vision applications such as object detection, 
pattern recognition, classification, and biometric 
systems (Idakwo et al. 2023). DL models have 
demonstrated remarkable success in image 
recognition tasks, with notable achievements in 
benchmarks such as the ImageNet Challenge. 
These advances have also been extended to 
agriculture, supporting applications in plant 
ripeness and sorting systems (Idakwo et al. 2024), 
disease detection (Ochijenu et al. 2025), pest 
recognition (Suzauddola et al. 2025), fruit 
classification (Wang et al. 2025), and weed 
detection (Goyal et al. 2025).  

A key advantage of DL is that it 
eliminates the need for manual segmentation and 
feature extraction, as models can automatically 
learn discriminative features directly from raw 
images (Idakwo, 2022). For instance, Kawasaki et 
al. (2015) applied a convolutional neural network 
to detect two cucumber diseases, melon yellow 
spot virus (MYSV) and zucchini yellow mosaic 
virus (ZYMV). They used image rotation to 
augment the dataset and reported an accuracy of 
94.9%, noting that larger datasets improved 
performance. Their later work, Fujita et al. (2016), 
extended this approach to identify seven 
cucumber diseases using two CNN architectures 
trained on images captured under varied 
conditions, such as different lighting, distances, 
and angles. Data augmentation methods, 
including shifting, rotation, and mirroring, were 
employed. CNN-2, trained on both high- and low-
quality images, achieved superior robustness, 
with an overall accuracy of 82.3% under fourfold 
cross-validation. 

Sladojevic et al. (2016) utilised a fine-
tuned CaffeNet model for detecting 13 plant 
diseases from 4,483 internet-sourced images, 
achieving 96.3% accuracy with 10-fold cross-
validation. Similarly, Rangarajan et al.  (2018) 
applied AlexNet and VGG16 to tomato leaf 
disease detection, reporting accuracies of 97.49% 
and 97.29%, respectively. Mohanty et al. (2016) 
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employed AlexNet and GoogLeNet to classify 26 
diseases in 14 crops using 54,306 images. Their 
GoogLeNet-based model achieved 99.35% 
accuracy on RGB images in controlled laboratory 
conditions. However, performance dropped 
drastically (to 31%) when tested on field images, 
highlighting challenges in generalisation.  

Other studies extended CNN-based 
approaches to different crops. Nachtigall et al. 
(2016) achieved 97.3% accuracy in apple leaf 
disease detection using AlexNet, while Amara et 
al. (2017) applied a LeNet-based CNN to banana 
leaf disease recognition, reporting accuracies of 
98.61% on colour and 94.44% on grayscale 
images under complex backgrounds. Hybrid 
approaches, such as combining CNNs with 
handcrafted features, further improved 
performance, as demonstrated in olive leaf 
disease detection (Cruz et al. 2017). Comparative 
studies have shown that pretrained models and 
transfer learning significantly outperform models 
trained from scratch. Ferentinos et al. (2018) 
tested five CNN architectures (AlexNet, 
AlexNetOWTBn, GoogLeNet, Overfeat, and VGG) 
on a dataset covering 58 plant disease classes, 
achieving 99.53% accuracy with VGG16. 
Similarly, Atole et al. (2018) applied a fine-tuned 
AlexNet to rice plant diseases, achieving 91.23% 
accuracy. 

The inherent computational demand in 
DL models due to large numbers of parameters 
involved created a paradigm shift to lightweight 
and mobile-friendly models to ease plant disease 
detection, especially for small-holding farmers. 
Ramcharan et al. (2019) used InceptionV3 and 
MobileNet-based SSD for cassava disease 
detection in both image and video datasets, 
achieving accuracies of up to 98% with SVM 
classifiers. Similarly, Agarwal et al. (2020) 
presented a lightweight, efficient CNN model 
which outperformed the classical CNN model and 
pretrained models with an accuracy of 98.4% 
when deployed on the benchmark PlantVillage 
Dataset. Atila et al. (2021) demonstrated that 
EfficientNet outperformed traditional CNNs, 
achieving up to 99.97% accuracy with fewer 
parameters and reduced training time. Bi et al. 
(2022) designed a deployable MobileNet-based 

model for apple leaf disease detection, with 
competitive accuracy but much lower 
computational cost compared to InceptionV3 and 
ResNet152.   

To tackle the limitations of deploying 
deep learning models for plant disease and pest 
detection on compact devices with restricted 
computational power. Wang et al. (2023) 
proposed an Ultra-Lightweight Efficient Network 
(ULEN) designed for image-based detection 
tasks. The network comprises a deep feature 
extraction module, which utilises residual depth-
wise convolution, and a classification module that 
processes multi-scale features enhanced by a 
spatial pyramid pooling layer. With a compact 
structure of approximately 100,000 parameters, 
ULEN offers an efficient solution tailored for 
lightweight applications. Its performance was 
validated on two publicly available plant image 
datasets collected from both indoor and outdoor 
environments, and tested on compact devices to 
ensure adaptability across different scenarios. 
The results indicate that ULEN achieves superior 
classification accuracy compared to state-of-the-
art models while maintaining the lowest 
computational complexity, making it a practical 
choice for fast and flexible deployment in precision 
agriculture.  

Similarly, the larger data requirements 
of CNNs and their inability to recognise object 
pose and deformation have been demonstrated to 
lower the system's performance. Therefore, 
Idakwo et al (2024) utilised the equivariance 
property of the capsule network to resolve the 
inherent issues in CNNs.  The developed 
Improved Capsule Network model was 
implemented in a tomato ripeness detection and 
sorting system. The system effectively classifies 
tomatoes into their respective ripeness stages 
with an average performance of 99.56%, 96.20%, 
96.20%, and 96.40% which are 3.17%, 2.69%, 
3.10%, and 2.68% average improvement over 
existing accuracy, precision, recall, and F1-Score, 
respectively.  

Moreover, the developed system was 
subjected to defective, ripe, and unripe tomato 
detection and achieved a 98.74% accuracy, which 
was a 5.74% improvement over the state-of-the-
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art. The higher accuracy of the developed system 
showed that the system can automate the 
Agricultural sorting of tomatoes. While this system 
assisted the local farmers in Lokoja, Kogi State, 
Nigeria, the inherent plant tomato disease within 
the region created a further need for a low 
computational system that can effectively detect 
plant disease. Thus, Ochijenu et al. (2025) 
improved the capsule network by hybridising the 
capsule network and yolo network to form the 
Capsule-YOLO network architecture. The tomato 
images from the PlantVillage Dataset and 
PlantDoc Dataset were combined to form an 
improved dataset with images from controlled and 
uncontrolled environments.  

The designed Capsule-Yolo network 
automatically segments the tomato leaf images 
and identifies diseases even when the images are 

overlapping or occluded within complex 
backgrounds. The model achieved outstanding 
results, with an accuracy of 99.31%, a recall of 
98.78%, a precision of 99.09%, and an F1-score 
of 98.93%. These values reflect performance 
gains of 2.91%, 1.84%, 5.64%, and 4.12% 
compared to existing advanced approaches. 
Furthermore, a user-friendly platform was created, 
enabling farmers and users to upload images of 
tomato plants for early disease detection, along 
with recommendations for accurate diagnosis and 
suitable treatment. 
 
Dominant Deep Learning Architectures 

Among the deep learning Architectures, 
the dominant deep learning architecture is 
summarised in Figure 4. 

 

 
Figure 4: Dominant Deep Learning Architecture 
 

a. Standard CNNs: Custom-designed 
architectures (e.g., with a few 
convolutional, pooling, and fully 
connected layers) are often used for 
smaller, specific datasets. 

b. Transfer Learning with Pre-trained 
Models: This is the most prevalent 
approach. Models pre-trained on 
massive general-image datasets (e.g., 
ImageNet) like VGGNet, ResNet, 

Inception, DenseNet, and, more 
recently, EfficientNet, are fine-tuned on 
plant disease datasets. This approach 
significantly reduces training time and 
data requirements while achieving 
state-of-the-art performance 
(Ferentinos et al. 2018). 

c. Lightweight Architectures: For 
deployment on mobile devices or edge 
computing platforms (e.g., drones, 
smartphones), lightweight models like 
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MobileNet, ShuffleNet, and SqueezeNet 
are crucial. They offer a favourable 
trade-off between accuracy and 
computational efficiency (Lu et al. 
2023). 

d. Beyond CNNs: Several emerging 
architectures have been deployed in 
plant disease detection. Notably among 
them are vision transformers 
(Dosovitskiy et al. 2020), generative 
adversarial networks, and object 
detection models. 

i. Vision Transformers (ViTs): 
Transformers, which use self-
attention mechanisms, have 
shown remarkable performance in 
vision tasks, often rivalling or 
surpassing CNNs on large 
datasets by capturing global 

contextual information (Yu et al. 
2023). 

ii. Generative Adversarial 
Networks (GANs): GANs are 
primarily used for data 
augmentation, generating 
synthetic training images to 
balance datasets and improve 
model robustness (Cresswell et al. 
2018). 

iii. Object Detection Models: For 
tasks requiring localisation (e.g., 
not only classify disease but also 
find it on the leaf), architectures like 
YOLO (You Only Look Once) and 
Faster R-CNN are employed. 

 
The summary of the core deep learning 

architecture in plant disease detection is shown in 
Table 5.

 
Table 5: Summary of Key Deep Learning Architectures in Plant Disease Detection 

Architecture Type Examples Key Advantages Common Use Cases 

Standard CNN Custom 5-layer CNN Simplicity, low 
computational cost 

Small-scale, specific 
studies 

Pre-trained Models 
(Transfer Learning) 

ResNet, VGG16, 
InceptionV3, 
EfficientNet 

High accuracy, reduced 
training time & data 
needs 

State-of-the-art 
classification 

Lightweight Models MobileNet, 
SqueezeNet 

High speed, low power 
consumption 

Mobile apps, drone-
based scouting 

Object Detection YOLOv5, Faster R-
CNN 

Provides disease 
localisation 

Precision spraying, 
detailed analysis 

Generative Models GANs (e.g., DCGAN, 
StyleGAN) 

Data augmentation 
handles class imbalance 

Enhancing dataset 
diversity 

METHODOLOGY: THE STANDARD PIPELINE 
FOR A PLANT DOCTOR SYSTEM 

Developing a DL-based plant disease 
diagnosis system follows a structured pipeline. 
This pipeline entails data acquisition, data 
preprocessing, model selection and training, and 
evaluation.  

1. Data Acquisition: Collecting images 
from sources like lab settings, farms (via 
smartphones), or aerial imagery (via 
drones). 

2. Data Preprocessing: Standardising 
images (resizing, normalisation), 

augmenting data (rotation, flipping, 
scaling, colour adjustment) to increase 
diversity and prevent overfitting, and 
segmenting the region of interest (e.g., 
separating leaf from background). 

3. Model Selection & Training: Choosing 
an appropriate architecture (see Section 
2.1). The model is trained on the 
preprocessed data, using a loss function 
(e.g., Cross-Entropy) and an optimiser 
(e.g., Adam) to learn the mapping from 
input images to disease classes. 
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4. Evaluation: The trained model is tested 
on a held-out validation set. Metrics like 
accuracy, precision, recall, F1-score, 
and confusion matrices are used to 
assess performance. 

5. Deployment: The final model is 
integrated into an application, such as a 
mobile app, a web platform, or an 
onboard drone computer, to make 
predictions on new, unseen data. 

 
Deep Learning Model Open-Source 
Framework 

There are several AI frameworks which 
are open source and available for practical 
implementation of deep learning models. The 
unique strength and limitations of these 
frameworks in terms of their core technologies, 
developers, hardware compatibility, functionality, 
programming languages, and typical applications 
serves as a practical guide for selecting the most 
suitable tool for specific AI and DL applications. 
TensorFlow is a robust open-source framework for 
dataflow and differentiable programming (Géron 
et al. 2022). It supports high-performance 
computations across diverse hardware, including 
memory units, GPUs, and TPUs. One of its core 
strengths lies in its use of dataflow graphs, which 
define how data is processed within a 
computation, making it a preferred platform for 
both machine learning and deep learning tasks.  

In comparison, Keras serves as a high-
level DL library that operates on top of TensorFlow 
(and other backends). It simplifies model 
development through an intuitive API and offers a 
wide range of pre-built layers and functions, such 
as convolutional and pooling layers that can be 
seamlessly integrated into models. Since 
TensorFlow 2.4, the framework has combined 
low-level model construction and training 
capabilities with Keras’s user-friendly high-level 
interface, enabling efficient and accessible model 
development. In this research, the combined use 
of TensorFlow and Keras has provided a practical 
balance between flexibility and ease of 
implementation. 

PyTorch, another widely adopted open-
source framework, offers extensive functionality 

for building and training ML and DL models 
(Imambi et al. 2021). It is particularly popular 
among researchers for its flexibility and ease of 
use. A distinguishing feature of PyTorch is its 
dynamic computational graph, which allows 
modifications during runtime, making it highly 
suitable for experimentation and research. Unlike 
TensorFlow’s earlier static graph approach, this 
dynamic structure provides more intuitive 
debugging and iterative model design. PyTorch 
also supports distributed training, enabling 
efficient scaling across multiple GPUs, and 
includes pre-built modules such as convolutional 
and recurrent layers for rapid prototyping. Its 
strong community support, with shared pre-trained 
models, datasets, and tutorials, further enhances 
its practicality in DL research and applications. 

Caffe (Convolutional Architecture for 
Fast Feature Embedding), developed by the 
Berkeley Vision and Learning Centre (BVLC) with 
contributions from the open-source community, is 
another established DL framework. It is 
recognised for its speed and efficiency, 
particularly in computer vision tasks such as 
object detection, image classification, and video 
summarisation. Implemented in C++ with a Python 
interface, Caffe integrates well with scientific 
computing libraries like NumPy and SciPy, 
providing both performance and flexibility. Its 
strength lies in highly optimised convolutional 
operations, which are crucial for visual recognition 
tasks. Furthermore, Caffe supports a variety of DL 
architectures, including CNNs, RNNs, and 
Transformer-based networks, while also offering 
pre-defined layers and functions that simplify 
model design (Kumar & Misra, 2024).  

Theano, developed by the Montreal 
Institute for Learning Algorithms (MILA) at the 
University of Montreal, was one of the pioneering 
open-source DL frameworks (Mohialden et al. 
2024). It is designed for efficient mathematical 
computation, particularly in training deep models 
on both CPUs and GPUs. Theano’s hallmark 
feature is symbolic differentiation, which enables 
precise and efficient gradient computation during 
model training (Shoaib et al. 2023). It also 
automates optimisation and differentiation 
processes, allowing for more scalable training of 
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complex models. Implemented in Python, Theano 
integrates smoothly with scientific computing 
libraries such as NumPy and SciPy, making it both 

powerful and versatile for numerical 
experimentation. The popular artificial intelligence 
framework is presented in Table 6. 

 
Table 6: Popular Artificial Intelligence Frameworks Comparison 

Technology Developer Auxiliary Devices Language 

TensorFlow Google CPU, GPU, TPU, Mobile Python 
PyTorch Facebook CPU, GPU Python 
ONNX Runtime Microsoft CPU, GPU, TPU, Edge Python 
MXNet Amazon CPU, GPU, TPU, Mobile Python, R, C++, Scala 
CNTK Microsoft CPU, GPU Python 

Challenges and Limitations 
Despite impressive results, several 

challenges impede the widespread adoption of 
these systems: 

1. Data Limitations: Models require massive, 
high-quality, and accurately labelled 
datasets. Real-world data is often 
imbalanced (few examples of rare diseases), 
contains complex backgrounds, and varies 
greatly in lighting, angle, and leaf age. These 
complexities can hinder model generalisation 
and robustness. 

2. Generalisation and Robustness: A model 
trained on one dataset (e.g., lab images on a 
plain background) often performs poorly on 
pictures from a different source (e.g., a 
smartphone photo in a field). Overcoming 
this domain shift is a major hurdle. 

3. Early Detection: Most systems are trained 
to identify clear symptoms. Detecting 
diseases at very early, pre-symptomatic 
stages remains extremely challenging. 

4. Multiple Diseases and Nutrient 
Deficiencies: Differentiating between 
diseases with similar visual symptoms and 
distinguishing disease symptoms from 
nutrient deficiencies or pest damage is a 
complex task. 

5. Explainability (XAI): Deep learning models 
are often black boxes. Farmers and 
agronomists need to understand why a 
diagnosis was made (e.g., which parts of the 
leaf were most influential) to trust the 
system's output. 

 
 

Future Directions and Conclusion 
The future of the AI Plant Doctor lies in 

addressing current limitations and exploring new 
frontiers: 

1. Multimodal Learning: Integrating visual 
data with other sensor data (e.g., 
hyperspectral imagery, weather data, soil 
sensors) to improve accuracy and enable 
earlier detection. 

2. Explainable AI (XAI): Incorporating 
techniques like Grad-CAM or LIME to provide 
visual explanations for model predictions, 
building user trust and providing agronomic 
insights. 

3. Unsupervised and Few-Shot Learning: 
Developing models that can learn from 
unlabeled data or require very few examples 
of a new disease to learn it, mitigating data 
scarcity issues. 

4. Edge AI and Real-Time Processing: 
Optimising models for ultra-efficient 
inference on low-power devices, enabling 
real-time diagnosis directly in the field without 
cloud connectivity. 

5. Large-Scale Real-World Deployment: 
Moving beyond academic benchmarks to 
large-scale field trials that validate economic 
and agronomic impact. 

 
CONCLUSION 

The integration of deep learning into 
plant pathology represents a true paradigm shift. 
Plant Doctor systems have evolved from a 
theoretical concept to a practical tool with 
demonstrable success in controlled environments. 
While challenges in generalisation, data scarcity, 
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and explainability persist, the trajectory of 
research is clear. By fostering collaboration 
between computer scientists, agronomists, and 
farmers, the future promises robust, accessible, 
and trustworthy AI systems that will empower 
growers with timely and precise diagnostic 
capabilities, ushering in a new era of sustainable 
and productive precision agriculture. 
 
ACKNOWLEDGEMENT 

The authors acknowledge with gratitude 
the support of the Tertiary Education Trust Fund 
(TETFund), Nigeria, through the Institutional-
Based Research (IBR) grant, which made this 
work possible. 
 
REFERENCES 
Agarwal, M., Gupta, S. K., & Biswas, K. K. 

(2020). Development of Efficient CNN 
model for Tomato crop disease 
identification. Sustainable Computing: 
Informatics and Systems, 28, 100407. 

Ahmad, N., Asif, H. M. S., Saleem, G., Younus, 
M. U., Anwar, S., & Anjum, M. R. 
(2021). Leaf image-based plant 
disease identification using color and 
texture features. Wireless Personal 
Communications, 121(2), 1139-1168. 

Ahmad, W., Adnan, S. M., & Irtaza, A. (2024). 
Local triangular-ternary pattern: a novel 
feature descriptor for plant leaf disease 
detection. Multimedia Tools and 
Applications, 83(7), 20215-20241. 

Amara, J., Bouaziz, B., & Algergawy, A. (2017). 
A deep learning-based approach for 
banana leaf diseases classification. In 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2017)-
Workshopband (pp. 79-88). 
Gesellschaft für Informatik eV. 

Archana, K. S., Srinivasan, S., Bharathi, S. P., 
Balamurugan, R., Prabakar, T. N., & 
Britto, A. S. F. (2022). A novel method 
to improve computational and 
classification performance of rice plant 
disease identification. The Journal of 
Supercomputing, 78(6), 8925-8945. 

Arora, A., & Gautam, V. (2023, December). 
Recent Patterns of Plant Leaf Disease 
Characterization with Artificial 
Intelligence Techniques. In 
International Conference On Artificial 
Intelligence, Computing, IOT and Data 
Analytics (pp. 123-144). Singapore: 
Springer Nature Singapore. 

Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). 
Plant leaf disease classification using 
EfficientNet deep learning model. 
Ecological Informatics, 61, 101182. 

Atole, R. R., & Park, D. (2018). A multiclass deep 
convolutional neural network classifier 
for detection of common rice plant 
anomalies. International Journal of 
Advanced Computer Science and 
Applications, 9(1). 

Ayaz, M., Li, C. H., Ali, Q., Zhao, W., Chi, Y. K., 
Shafiq, M., ... & Huang, W. K. (2023). 
Bacterial and fungal biocontrol agents 
for plant disease protection: Journey 
from lab to field, current status, 
challenges, and global perspectives. 
Molecules, 28(18), 6735. 

Basavaiah, J., & Arlene Anthony, A. (2020). 
Tomato leaf disease classification 
using multiple feature extraction 
techniques. Wireless Personal 
Communications, 115(1), 633-651. 

Bhatia, A., Chug, A., Singh, A. P., Singh, R. P., & 
Singh, D. (2022). A machine learning-
based spray prediction model for 
tomato powdery mildew disease. Indian 
Phytopathology, 75(1), 225-230. 

Bhimte, N. R., & Thool, V. R. (2018, June). 
Diseases detection of cotton leaf spot 
using image processing and SVM 
classifier. In 2018 Second international 
conference on intelligent computing 
and control systems (ICICCS) (pp. 340-
344). IEEE. 

Bi, C., Wang, J., Duan, Y., Fu, B., Kang, J. R., & 
Shi, Y. (2022). MobileNet based apple 
leaf diseases identification. Mobile 
Networks and Applications, 27(1), 172-
180. 

http://www.atbuftejoste.net/
mailto:bakarihenry341i@gmail.com


 
                                 JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025 
                              E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng 

Corresponding author: Monday Abutu Idakwo 
  mondiouf@gmail.com  
 Department of Computer Engineering, Faculty of Engineering, Federal University of Lokoja.  
© 2025. Faculty of Technology Education. ATBU Bauchi. All rights reserved 

306 

Bishshash, P., Nirob, A. S., Shikder, H., Sarower, 
A. H., Bhuiyan, T., & Noori, S. R. H. 
(2024). A comprehensive cotton leaf 
disease dataset for enhanced detection 
and classification. Data in Brief, 57, 
110913. 

Chuanlei, Z., Shanwen, Z., Jucheng, Y., Yancui, 
S., & Jia, C. (2017). Apple leaf disease 
identification using genetic algorithm 
and correlation based feature selection 
method. International Journal of 
Agricultural and Biological Engineering, 
10(2), 74-83. 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., 
Weissenborn, D., Zhai, X., Unterthiner, 
T., ... & Houlsby, N. (2020). An image 
is worth 16x16 words: Transformers for 
image recognition at scale. arXiv 
preprint arXiv:2010.11929. 

Dutta, K., Talukdar, D., & Bora, S. S. (2022). 
Segmentation of unhealthy leaves in 
cruciferous crops for early disease 
detection using vegetative indices and 
Otsu thresholding of aerial images. 
Measurement, 189, 110478. 

El Sghair, M.; Jovanovic, R.; Tuba, M. An 
Algorithm for Plant Diseases Detection 
Based on Color Features. Int. J. Agric. 
Sci. 2017,2, 1–6. 

Ferentinos, K. P. (2018). Deep learning models 
for plant disease detection and 
diagnosis. Computers and electronics 
in agriculture, 145, 311-318. 

Fujita, E., Kawasaki, Y., Uga, H., Kagiwada, S., & 
Iyatomi, H. (2016, December). Basic 
investigation on a robust and practical 
plant diagnostic system. In 2016 15th 
IEEE international conference on 
machine learning and applications 
(ICMLA) (pp. 989-992). IEEE. 

Géron, A. (2022). Hands-on machine learning 
with Scikit-Learn, Keras, and 
TensorFlow. " O'Reilly Media, Inc.". 

Goyal, R., Nath, A., & Niranjan, U. (2025). Weed 
detection using deep learning in 
complex and highly occluded potato 
field environment. Crop Protection, 
187, 106948. 

Hossain, M. M., Sultana, F., Mostafa, M., Ferdus, 
H., Rahman, M., Rana, J. A., ... & Al 
Sabbir, M. A. (2024). Plant disease 
dynamics in a changing climate: 
impacts, molecular mechanisms, and 
climate-informed strategies for 
sustainable management. Discover 
Agriculture, 2(1), 132. 

Idakwo, M. A. (2022). Development of an 
Improved Steganography-based 
Patient Management Information 
System. ATBU Journal of Science, 
Technology and Education, 10(2), 56-
69. 

Idakwo, M. A., Achimugu, O., Abdullahi, M. J., 
Usman, S. A., Achimugu, P., Olufemi, 
T. O., & Ayemowa, M. O. (2023, 
December). A Modified Gender 
Classification Approach Using Capsule 
Network. In International Conference 
on Hybrid Intelligent Systems (pp. 186-
197). Cham: Springer Nature 
Switzerland. 

Idakwo, M. A., Emmanuel, O., Usman, R. A., 
Yusufu, R. U., Ebenezer, O. E., 
Busayo, A., ... & Johson, O. (2024, 
April). An Improved Tomato Ripeness 
Detection and Sorting System. In 2024 
International Conference on Science, 
Engineering and Business for Driving 
Sustainable Development Goals 
(SEB4SDG) (pp. 1-5). IEEE. 

Imambi, S., Prakash, K. B., & 
Kanagachidambaresan, G. R. (2021). 
PyTorch. In Programming with 
TensorFlow: solution for edge 
computing applications (pp. 87-104). 
Cham: Springer International 
Publishing. 

Islam, M., Dinh, A., Wahid, K., & Bhowmik, P. 
(2017, April). Detection of potato 
diseases using image segmentation 
and multiclass support vector machine. 
In 2017 IEEE 30th canadian 
conference on electrical and computer 
engineering (CCECE) (pp. 1-4). IEEE. 

Javidan, S. M., Banakar, A., Vakilian, K. A., & 
Ampatzidis, Y. (2023). Diagnosis of 

http://www.atbuftejoste.net/
mailto:bakarihenry341i@gmail.com


 
                                 JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025 
                              E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng 

Corresponding author: Monday Abutu Idakwo 
  mondiouf@gmail.com  
 Department of Computer Engineering, Faculty of Engineering, Federal University of Lokoja.  
© 2025. Faculty of Technology Education. ATBU Bauchi. All rights reserved 

307 

grape leaf diseases using automatic K-
means clustering and machine 
learning. Smart Agricultural 
Technology, 3, 100081. 

Kawasaki, Y., Uga, H., Kagiwada, S., & Iyatomi, 
H. (2015, December). Basic study of 
automated diagnosis of viral plant 
diseases using convolutional neural 
networks. In International symposium 
on visual computing (pp. 638-645). 
Cham: Springer International 
Publishing. 

Khan, M. A., Lali, M. I. U., Sharif, M., Javed, K., 
Aurangzeb, K., Haider, S. I., ... & 
Akram, T. (2019). An optimized method 
for segmentation and classification of 
apple diseases based on strong 
correlation and genetic algorithm based 
feature selection. IEEE Access, 7, 
46261-46277. 

Kumar, B. A., & Misra, N. K. (2024). Masked face 
age and gender identification using 
CAFFE-modified MobileNetV2 on 
photo and real-time video images by 
transfer learning and deep learning 
techniques. Expert Systems with 
Applications, 246, 123179. 

Kumar, S., Sharma, B., Sharma, V. K., Sharma, 
H., & Bansal, J. C. (2020). Plant leaf 
disease identification using exponential 
spider monkey optimization. 
Sustainable computing: Informatics and 
systems, 28, 100283. 

Li, X., Huang, F., Sun, H., He, J., Javidan, S. M., 
Ampatzidis, Y., & Zhang, Z. (2025). A 
Bio-Inspired Framework for Apple Leaf 
Disease Detection: Integrating Lesion 
Localization, Ant Colony Optimization, 
and Machine Learning. Smart 
Agricultural Technology, 101141. 

Lindow, S. E., & Webb, R. R. (1983). 
Quantification of foliar plant disease 
symptoms by microcomputer-digitized 
video image analysis. Phytopathology, 
73(4), 520-524. 

Lu, J., Shi, R., Tong, J., Cheng, W., Ma, X., & 
Liu, X. (2023). Lightweight Method for 
Plant Disease Identification Using 

Deep Learning. Intelligent Automation 
& Soft Computing, 37(1). 

Mathew, D., Kumar, C. S., & Cherian, K. A. 
(2021). Foliar fungal disease 
classification in banana plants using 
elliptical local binary pattern on 
multiresolution dual tree complex 
wavelet transform domain. Information 
processing in Agriculture, 8(4), 581-
592. 

Martin, D. P., & Rybicki, E. P. (1998). 
Microcomputer-based quantification of 
maize streak virus symptoms in Zea 
mays. Phytopathology, 88(5), 422-427. 

Mohanty, S. P., Hughes, D. P., & Salathé, M. 
(2016). Using deep learning for image-
based plant disease detection. 
Frontiers in plant science, 7, 215232. 

Mohialden, Y. M., Kadhim, R. W., Hussien, N. M., 
& Hussain, S. A. K. (2024). Top 
python-based deep learning packages: 
A comprehensive review. International 
Journal Papier Advance and Scientific 
Review, 5(1), 1-9. 

Nachtigall, L. G., Araujo, R. M., & Nachtigall, G. 
R. (2016, November). Classification of 
apple tree disorders using 
convolutional neural networks. In 2016 
IEEE 28th international conference on 
tools with artificial intelligence (ICTAI) 
(pp. 472-476). IEEE. 

Ochijenu, I., Idakwo, M. A., & Felix, S. (2025). 
Development of an Improved Capsule-
Yolo Network for Automatic Tomato 
Plant Disease Early Detection and 
Diagnosis. arXiv preprint 
arXiv:2507.03219. 

Oyewola, D. O., Dada, E. G., Misra, S., & 
Damaševičius, R. (2021). Detecting 
cassava mosaic disease using a deep 
residual convolutional neural network 
with distinct block processing. PeerJ 
Computer Science, 7, e352. 

Park, C. R., Kang, S. H., & Lee, Y. (2020). 
Median modified wiener filter for 
improving the image quality of gamma 
camera images. Nuclear Engineering 
and Technology, 52(10), 2328-2333. 

http://www.atbuftejoste.net/
mailto:bakarihenry341i@gmail.com


 
                                 JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025 
                              E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng 

Corresponding author: Monday Abutu Idakwo 
  mondiouf@gmail.com  
 Department of Computer Engineering, Faculty of Engineering, Federal University of Lokoja.  
© 2025. Faculty of Technology Education. ATBU Bauchi. All rights reserved 

308 

Patil, J. K., & Mandlik, V. S. (2024). Plant Leaf 
Disease Detection Using Integrated 
Color and Texture Features. Nature 
Environment & Pollution Technology, 
23(4). 

Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-
Barredo, A., Echazarra, J., & 
Johannes, A. (2019). Deep 
convolutional neural networks for 
mobile capture device-based crop 
disease classification in the wild. 
Computers and Electronics in 
Agriculture, 161, 280-290. 

Poudel, M., Mendes, R., Costa, L. A., Bueno, C. 
G., Meng, Y., Folimonova, S. Y., ... & 
Martins, S. J. (2021). The role of plant-
associated bacteria, fungi, and viruses 
in drought stress mitigation. Frontiers in 
microbiology, 12, 743512. 

Rangarajan, A. K., Purushothaman, R., & 
Ramesh, A. (2018). Tomato crop 
disease classification using pre-trained 
deep learning algorithm. Procedia 
computer science, 133, 1040-1047. 

Ramcharan, A., McCloskey, P., Baranowski, K., 
Mbilinyi, N., Mrisho, L., Ndalahwa, M., 
... & Hughes, D. P. (2019). A mobile-
based deep learning model for cassava 
disease diagnosis. Frontiers in plant 
science, 10, 272. 

Savary, S., Willocquet, L., Pethybridge, S. J., 
Esker, P., McRoberts, N., & Nelson, A. 
(2019). The global burden of 
pathogens and pests on major food 
crops. Nature ecology & evolution, 
3(3), 430-439. 

Shoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., 
Ullah, A., Alenezi, F., ... & Ali, F. 
(2023). An advanced deep learning 
models-based plant disease detection: 
A review of recent research. Frontiers 
in Plant Science, 14, 1158933. 

Singh, A.; Singh, M.L. Automated blast disease 
detection from paddy plant leaf—A 
color slicing approach. In Proceedings 
of the 2018 7th International 
Conference on Industrial Technology 

and Management (ICITM), Oxford, UK, 
7–9 March 2018; pp. 339–344 

Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, 
S., & Batra, N. (2020). PlantDoc: A 
dataset for visual plant disease 
detection. In Proceedings of the 7th 
ACM IKDD CoDS and 25th COMAD 
(pp. 249-253). 

Sladojevic, S., Arsenovic, M., Anderla, A., 
Culibrk, D., & Stefanovic, D. (2016). 
Deep neural networks based 
recognition of plant diseases by leaf 
image classification. Computational 
intelligence and neuroscience, 2016(1), 
3289801. 

Suzauddola, M., Zhang, D., Zeb, A., Chen, J., 
Wei, L., & Rayhan, A. S. (2025). 
Advanced deep learning model for 
crop-specific and cross-crop pest 
identification. Expert Systems with 
Applications, 274, 126896. 

Tripathi, M. K., Neelakantappa, M., Prashanthi, 
T., Sukte, C. D., Pandurang, D. D., & 
Bhosle, N. P. (2025). Plant Leaf 
Disease Classification in Precision 
Farming With Hybrid Classifier: Colour, 
Deep and Pattern‐Based Feature 
Descriptors. Journal of Phytopathology, 
173(1), e70030. 

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., 
Sun, C., Shepard, A., ... & Belongie, S. 
(2018). The inaturalist species 
classification and detection dataset. In 
Proceedings of the IEEE conference on 
computer vision and pattern recognition 
(pp. 8769-8778). 

Wang, B., Zhang, C., Li, Y., Cao, C., Huang, D., 
& Gong, Y. (2023). An ultra-lightweight 
efficient network for image-based plant 
disease and pest infection detection. 
Precision Agriculture, 24(5), 1836-
1861. 

Wang, X., Chen, X., Gong, R., Wang, T., & 
Huang, Y. (2025). Improving fruit 
variety classification using near-
infrared spectroscopy and deep 
learning techniques. Journal of Food 

http://www.atbuftejoste.net/
mailto:bakarihenry341i@gmail.com


 
                                 JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025 
                              E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng 

Corresponding author: Monday Abutu Idakwo 
  mondiouf@gmail.com  
 Department of Computer Engineering, Faculty of Engineering, Federal University of Lokoja.  
© 2025. Faculty of Technology Education. ATBU Bauchi. All rights reserved 

309 

Composition and Analysis, 140, 
107243. 

Wu, G., Fang, Y., Jiang, Q., Cui, M., Li, N., Ou, 
Y., ... & Zhang, B. (2023). Early 
identification of strawberry leaves 
disease utilizing hyperspectral imaging 
combing with spectral features, multiple 
vegetation indices and textural 
features. Computers and Electronics in 
Agriculture, 204, 107553. 

Yu, S., Xie, L., & Huang, Q. (2023). Inception 
convolutional vision transformers for 
plant disease identification. Internet of 
Things, 21, 100650. 

Yusoff, N. M., Halim, I. S. A., Abdullah, N. E., & 
Rahim, A. Z. A. A. (2018, August). 
Real-time hevea leaves diseases 
identification using Sobel edge 

algorithm on FPGA: A preliminary 
study. In 2018 9th IEEE Control and 
System Graduate Research 
Colloquium (ICSGRC) (pp. 168-171). 
IEEE. 

Zhang, S., Wang, H., Huang, W., & You, Z. 
(2018). Plant diseased leaf 
segmentation and recognition by fusion 
of superpixel, K-means and PHOG. 
Optik, 157, 866-872. 

Zhang, S., You, Z., & Wu, X. (2019). Plant 
disease leaf image segmentation 
based on superpixel clustering and EM 
algorithm. Neural Computing and 
Applications, 31(Suppl 2), 1225-1232. 

 
 

 
 

http://www.atbuftejoste.net/
mailto:bakarihenry341i@gmail.com

