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ABSTRACT

The global agricultural sector faces persistent challenges from plant zs;clg'ljslgfyo

diseases, which threaten food security, economic stability, and Received: April, 2025
sustainable agriculture. Traditional methods of disease diagnosis, Received in revised form: May, 2025
reliant on manual scouting by human experts, are often slow, labour- ~ Accepted: July, 2025

intensive, and prone to error. The advent of deep learning, a subset of "~ Pished onfine: September, 2025
artificial intelligence, has catalysed a paradigm shift in how plant keywoRDs

diseases are detected and diagnosed. This paper surveys this PlantDisease, Machine Leaming, Deep
transformation by synthesising recent advancements in deep learning ~ Leaming, Transfer Leaming, Feature
architectures, primarily Convolutional Neural Networks, as well as ~ =Xaction

Transformers and generative models, for automated plant disease

detection and classification using visual data (e.g., leaf images). The

paper meticulously outlines the standard pipeline, encompassing data

acquisition,  preprocessing, model training, and deployment.

Furthermore, it highlights critical challenges such as the need for large,

curated, and diverse datasets, model generalisation across different

environmental conditions, and the path towards real-world deployment

in the form of Al-powered Plant Doctor systems. Finally, future

research directions, including the integration of multimodal data and

explainable Al, are critically discussed. Findings show that deep

learning is poised to revolutionise plant disease management,

enabling precise, rapid, and scalable diagnostics for farmers

worldwide.

INTRODUCTION

Plant diseases are a significant cause of
crop yield loss, estimated to result in annual global
economic damages exceeding $200 billion
(Savary et al. 2019). Three primary elements
contribute to the development of diseases in
plants: a conducive environment, the presence of
a pathogen, and the host plant itself. Typically,
symptoms of diseases first appear at the lower
parts of the plant and then progress upwards.
Once infection occurs, many diseases can spread
rapidly throughout the crop, making regular crop
monitoring essential. Early intervention can help
control and reduce the proliferation of the disease.

In some scenarios, diseases may
become apparent only later in the growing season,
often after the pollination stage. Plant diseases
vary widely and affect different organs, but those
that manifest on leaves, classified as foliar
diseases, tend to present the most recognisable
symptoms that can be visually identified by plant
pathologists. Notably, fungal infections are a
major cause, responsible for nearly half of crop
yield losses (Hosain et al. 2024). As a result,
contemporary research often relies on analysing
images of plant leaves using computer vision,
machine learning, and deep learning techniques
to detect diseases (Ochijenu et al. 2025)
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An effective diagnosis framework for
plant diseases involves not only early detection
within the growing season but also the ability to
identify multiple diseases across various crops
simultaneously, gauge the disease severity,
determine the optimal amount of pesticide to
apply, and suggest management practices to limit
the disease spread (Hosain et al. 2024. Accurate
identification of plant diseases plays a crucial role
in precision agriculture and plant phenotyping,
both fields that depend heavily on data,
technology, and information (Li et al. 2025).
Hence, early and accurate detection is the first
and most crucial step in implementing effective
management strategies to mitigate low plant
yields. For centuries, diagnosis has depended on
the expertise of agricultural pathologists and
farmers visually inspecting plants for symptoms.
This method, while valuable, is inherently limited
by its subjectivity, scalability, and the scarcity of
experts, especially in remote regions.

To address these limitations,
researchers have turned to image processing
approaches using plant images. One of the
pioneering works in this field, dating back to 1983,
employed black-and-white imaging of leaves from
potted tomato and blackened fern plants for
automated disease assessment (Lindow & Webb,
1983). Additionally, image analysis methods have
been applied to quantify diseases, such as streak
disease in corn (Martin et al. 1998), with
computerised approaches proving more precise
than traditional visual methods. Over the last three
decades, image processing has gained traction in
plant disease diagnosis because it offers an
objective approach. Nevertheless, this approach
requires manual extraction of features, which is
time-consuming and can be subjective, as
different researchers might prioritise different
features.

Approximately two decades ago,
machine learning began to be explored for
identifying plant diseases. Early studies reviewed
the potential of machine learning in agriculture,
with techniques like support vector machines
(SVM), random forests, and K-nearest neighbours
(KNN) being used to detect diseases on crops
such as tomato and soybean. These methods

were employed to both detect diseases and
assess their severity. For example, SVM, KNN,
and Naive Bayes classifiers were utilised for
detecting tomato powdery mildew, while
forecasting models were proposed for predicting
disease outbreaks (Bhatia et al. 2022). Despite
these advancements, classical machine learning
still depended heavily on manually extracted
features for training, which was a labour-intensive
step.

Moreover, both image processing and
machine learning approaches often performed
well only under specific conditions and had limited
generalizability. Hence, a paradigm shift toward
deep learning techniques. Unlike classical
approaches, deep learning automates feature
extraction and delivers higher accuracy (Idakwo et
al. 2024). This approach has become more
prevalent due to advances in computational
power, data storage, and the availability of large
annotated datasets. Since the breakthrough
success of deep learning models at the ImageNet
competition in 2012, researchers from diverse
fields have increasingly adopted these techniques
for plant disease detection (Ferentinos et al.,
2018). Furthermore, the digital revolution in
agriculture, fueled by the proliferation of
smartphones and drones, has generated vast
amounts of visual data from fields.

Concurrently, breakthroughs in the field
of deep learning (DL), particularly in computer
vision, have provided the tools to analyse this data
with superhuman accuracy and speed. This
confluence has given rise to a new paradigm: the
Al-powered Plant Doctor. These systems leverage
deep learning models to automatically analyse
images of plants and provide instant, preliminary
diagnoses, much like a medical doctor analysing
an X-ray. The contributions of this paper are
highlighted:

1. Traces the chronological shift from
traditional techniques to modern deep
learning-based approaches in plant
disease detection.

2. Provides a systematic overview of the
dominant deep learning architectures and
methodologies employed in  recent
literature.
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3. Outlines the standard development
pipeline for building a DL-based plant
disease diagnosis system, from data
acquisition to model deployment.

4. ldentifies and critically discusses the
major challenges and limitations that
hinder progress in the field.

5. Proposes future research directions
aimed at addressing these challenges and
enabling the development of scalable,
automated Plant Doctor systems.

PLANT DISEASES SYMPTOMS AND TYPES

It is to understand the various plant
disease types and symptoms before developing
any model that can effectively detect and forecast
the presence of disease. Plant diseases arise from
abnormal behaviour or physiological changes,
caused by either biotic or abiotic factors (Picon et
al. 2019), as illustrated in Figure 1.

Biotic (Infectious)

Abiotic (Non-Infectious)
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Figure 1: Plant Classification

Biotic diseases result from infectious
agents, while abiotic diseases are caused by non-
infectious factors. Abiotic diseases are generally
less hazardous and often preventable due to their
non-transmissible nature. This study focuses
specifically on biotic diseases.

1. Bacterial Disease: Bacterial infections in
plants typically start as small, water-
soaked green spots that enlarge and
eventually turn into dry, dead lesions, as
illustrated in Figure 2(a). Examples include
black or brown leaf spots and yellow halos
of similar size. These blemishes often
appear as speckles under dry conditions.
In brinjal crops, bacterial wilt is particularly
destructive, causing the entire plant to
collapse (Ayaz et al. 2023).

2. Viral Disease: Viral infections are among
the most challenging plant diseases to
study. Symptoms may be subtle and mimic
those of herbicide damage or nutrient
deficiencies, making detection difficult

(Poudel et al. 2021). Viral diseases are
commonly transmitted by insects such as
beetles, leafhoppers, aphids, and
whiteflies. A notable example is the mosaic
virus, which produces green or yellow
streaks on the foliage, as illustrated in
Figure 2(b).

3. Fungal Disease: Fungal infections can
affect multiple parts of a plant, including
causing sclerotium wilt, crown rot, stem
rust, eyespot (on stems or sheaths), rust,
leaf blight, ergot (on spikes), carnal bunt,
and black point (on seeds). Late blight,
caused by Phytophthora species, typically
appears on older leaves as grey-green,
water-soaked spots, as shown in Figure
2(c). This fungus thrives under fluctuating
wet and dry conditions, and as the disease
progresses, the spots darken and white
fungal growth appears on the surface
(Ayaz et al. 2023). Early blight, caused by
the Alternaria species, manifests on older
leaves as small, brown spots with a
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characteristic ~ bull's-eye  pattern  of
concentric rings, as shown in Figure 2(d).
Rust fungi develop on mature leaves,
forming lesions on the upper surface that
turn black after initially appearing green-
yellow, as depicted in Figure 2(e).

_2{ %

] a. Bacteriﬂal b.Vi}al Mosaic
bleish

c. Late Blight ~ d. Early Blight  e.Leaf scorch

Figure 2: Various Plant Diseases

THE RISE OF DEEP LEARNING

Early attempts at automated disease
detection used traditional machine learning
techniques like SVMs and k-Nearest Neighbours
(k-NN). The conventional approach employed in
traditional  image  recognition  processing
technology to identify plant diseases is shown in
Figure 3.

Image Image Feature Identification|
Acquisition =3 Processing == Extraction =p|  #1d
Clagsification|

Figure 3: Classical Approach in Image Processing

Accurate identification of plant diseases
through leaf images basically involves several
stages. The process begins with image acquisition
and preprocessing, followed by feature extraction,
and concludes with applying classifiers for disease
recognition.

Image Acquisition

The initial step is the acquisition of
image datasets. Several publicly available
benchmark datasets support plant disease
research. While some are from a controlled

environment, others are from the field.
Unfortunately, the performance of machine
learning (ML) models is significantly affected by
the quality and nature of the input data, such as
whether images are captured in controlled
laboratory settings or in natural field conditions.
Images taken under controlled conditions usually
involve a single leaf placed against a uniform,
artificial background, as seen in datasets like
PlantVillage. These controlled datasets often
enable high accuracy in classification tasks, but
collecting such data is both time-intensive and
expensive.

In contrast, field images present a far
greater challenge due to their complexity, which
includes multiple leaves, various plant parts,
diverse lighting and shading, as well as
heterogeneous backgrounds and ground textures
(/dakwo et al., 2024). Research shows that ML
models trained solely on laboratory images
perform poorly when applied to field images,
rendering them ineffective for practical field
applications. Conversely, models trained on field
images tend to perform reasonably well when
tested with laboratory images. Including field
images in the training process substantially
improves model performance, but it is still
recommended to evaluate models with images
from different data sources for robust results.
Some of the widely known public plant disease
datasets are PlantDoc (Ochijenu et al,2025),
PlantVillage (Ahmad et al., 2024), Cassava, Hops,
Cotton, and Rice.

1. Cassava dataset contains five classes,
including cassava mosaic disease,
bacterial blight, brown streak, green
mite, and healthy samples, with images
collected directly from field conditions
(Oyewole et al. 2021). This dataset can
be used to train a deep learning model
for real field cassava disease detection.
The images in the respective disease
class are imbalanced, as shown in
Table 1.
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Table 1: Cassava Dataset Summary

Class Images
Healthy 316
Healthy blight 466
Brown Streak 1,443
Green Mite 773
Mosaic Disease 2,658
2. Cotton dataset comprises 2,137

images of cotton leaves at different
stages of health and disease, collected
from the National Cotton Research
Institute field in Gazipur. The images
cover both healthy leaves and those
affected by bacterial blight, curl virus,
herbicide-induced damage, leaf hopper
(jassids) infestation, reddening, and
variegation. The images were taken
using a Redmi Note 11s smartphone in
three resolutions: 3000 x 4000, 2239 x
2239, and 1597 x 1597 pixels, providing
variation in spatial detail. Data collection
was carried out through field surveys
between October 2023 and January
2024, under the supervision of domain
experts to ensure accurate disease
identification.  Furthermore,  images
were taken under diverse environmental
conditons and at different growth
stages of cotton plants, enabling a
comprehensive  representation  of
natural disease manifestations in field
settings (Bishshash et al. 2024).

3. Rice dataset captures four disease
types: bacterial blight, blast, brown spot,
and tungro, collected in natural field
environments with image distributions
as presented in Table 2.

Table 2: Rice Dataset Summary

Leaf Disease Images
Bacterial Blight 1584
Blast 1440
Brown Spot 1600
Tungro 1308
Total 5932

4. PlantDoc

Unlike PlantVillage, whose images are
from a controlled environment, the PlantDoc major
images were obtained from the real agricultural
field environment. The PlantDoc contains 2,598
images covering 17 plant diseases across 13 crop
types (Ochijenu et al. 2025). The diversity in
acquisition settings provides opportunities to
develop more robust deep learning models for
disease detection. Nevertheless, certain images
depict multiple infected leaves or even entire
plants, which may hinder the models’ ability to
capture distinctive disease features. Moreover,
PlantDoc is highly imbalanced, with many classes
containing fewer than 200 samples, as outlined in
Table 3. Due to these limitations, achieving high
accuracy with deep learning approaches on this
dataset is taxing.

Table 3: PlantDoc Dataset Summary

Crop Disease Images
Apple Healthy 91
Scab 93
Rust 89
Bell pepper  Healthy 61
Leaf Spot 71
Blueberry Healthy 17
Cherry Healthy 57
Corn Leaf Blight 192
Grey Leaf Spot 68
Rust 116
Grape Healthy 69
Black Rot 64
Peach Healthy 112
Potato Early Blight 117
Late blight 105
Raspberry ~ Healthy 119
Soybean Healthy 65
Squash Powdery Mildew 130
Strawberry ~ Healthy 96
Tomato Healthy 63
Bacterial Spot 110
Early Blight 88
Late Blight 111
Leaf Mold 91
Septoria Leaf Spot 151
Mosaic Virus 54
Yellow Virus 76
Spider Mite 2
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PlantVillage dataset contains 54,309
images captured under controlled
laboratory conditions, covering 38
disease classes across 14 plant species
such as apple, corn, grape, tomato, and
potato. It includes both healthy and
diseased samples, e.g., apple scab,
grape black rot, corn leaf blight, and
tomato yellow curl virus. Since its
release, it has become the most widely
utilised resource for training and
developing deep learning models aimed
at plant disease detection and severity
assessment (Ahmad et al.2024).
Nevertheless, because the dataset
does not fully reflect real-field
conditions, models trained solely on
these images often struggle to
generalise effectively to field-based
data (Ochijenu et al. 2025). Another
limitation of PlantVillage is its class
imbalance (Idakwo et al. 2024). Visual
inspection  has also  revealed
overlapping features between certain
disease categories. For instance, some
images labelled as Grey Leaf Spot
(GLS) also show symptoms of Northern
Leaf Blight (NLB), which can introduce
confusion and degrade the performance
of deep learning classifiers. The
PlantVillage dataset summary is given
in Table 4.

Table 4: PlantVillage Dataset Summary

Crop Disease Images
Apple Healthy 1,645
Black Rot 621
Cedar Apple Rust 275
Apple Scab 630
Blueberry Healthy 1,502
Cherry Healthy 854
Powdery Mildew 1,052
Corn Healthy 1,162
Grey Leaf Spot 513
Common Rust 1,192
Northern Leaf Blight 985
Grape Healthy 423
Black Rot 1,180

Crop Disease Images
Black measles 1,383
Isariopsis Leaf Spot 1,076
Orange Citrus Greening 5,507
Peach Healthy 360
Bacterial Spot 2,297
Bell Pepper  Healthy 1,478
Bacterial Spot 997
Potato Healthy 152
Early Blight 1,000
Late Blight 1,000
Raspberry  Healthy 371
Soybean Healthy 5,090
Squash Powdery Mildew 1,835
Strawberry  Healthy 456
Leaf Scorch 1,109
Tomato Healthy 1,592
Bacteria Spot 2,127
Early Blight 1,000
Late Blight 1,909
Leaf Mold 952
Septoria Leaf Spot 1,771
Spider Mites 1,676
Target Spot 1,404
Yellow Leaf Curl 5,357
Mosaic Virus 373
6. Hops dataset consists of five

categories, including downy mildew,
powdery mildew, nutrient deficiency,
pest infection, and healthy leaves, often
with complex, nonuniform backgrounds
(Arora & Gautam, 2023).

Cotton dataset comprises 2,137
images of cotton leaves at different
stages of health and disease, collected
from the National Cotton Research
Institute field in Gazipur. The images
cover both healthy leaves and those
affected by bacterial blight, curl virus,
herbicide-induced damage, leaf hopper
(jassids) infestation, reddening, and
variegation. The images were taken
using a Redmi Note 11s smartphone in
three resolutions: 3000 x 4000, 2239 x
2239, and 1597 x 1597 pixels, providing
variation in spatial detail. Data collection
was carried out through field surveys
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between October 2023 and January
2024, under the supervision of domain
experts to ensure accurate disease
identification. ~ Furthermore, images
were taken under diverse environmental
conditons and at different growth
stages of cotton plants, enabling a
comprehensive  representation  of
natural disease manifestations in field
settings (Bishshash et al. 2024).

8. iNaturalist & PlantCLEF: Large-scale
datasets that include a wider variety of
plant species and diseases in natural
environments. It contains about 859,000
images covering more than 5,000
species of plants and animals. It
includes many visually similar species
photographed in diverse environments
across the globe. The images come
from different types of cameras, vary in
quality, show a significant imbalance
among classes, and have been
validated through contributions from
multiple citizen scientists (Van Horn et
al. 2018).

In addition to these standard datasets,
some researchers also construct custom datasets
for their studies.

Preprocessing

Preprocessing is crucial for image
quality enhancement and preparing data for
analysis. Basic preprocessing steps entail colour
space conversion, resizing to a uniform scale,
noise reduction, morphological adjustments, and
disease region segmentation. Noise reduction can
be achieved through filters such as Wiener,
median (Park et al. 2020), or Gaussian (Tripathi et
al. 2025). Multiple colour models, including RGB,
HSV, CIE L*a*b* (Sghair et al. 2017), and YCbCr,
are frequently applied for effective image analysis.
To isolate the region of interest (ROI),
segmentation methods such as  colour
thresholding (Chuanlei et al. 2017), Sobel edge
detection (Yusoff et al. 2018), Otsu’s method
(Dutta et al. 2022), and K-means clustering
(Javidan et al. 2023) are often used.

Feature Extraction

Feature extraction transforms visual
disease patterns into numerical representations,
enabling efficient classification. An ideal feature
set should capture the distinct characteristics that
separate one disease class from another.
Features are commonly grouped into colour,
texture and shape as depicted by Figure 3.
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Figure 3 Common Features Categories for Plant
Disease Detection Methods
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Colour features-Based Disease Detection.
This method focuses on extracting
chromatic attributes from infected regions of
leaves. For example, Sghair et al. (2017) explored
multiple colour models for plant disease detection.
The plant's leaf images were converted into
YCbCr, HSI, and CIE L*a*b* spaces, followed by
noise reduction using median filtering.
Segmentation of the diseased spots was carried
out using Kapur's thresholding, applied
specifically to the Cr component of YCbCr, the H
component of HSI, and the A component of CIE
L*A*B*.  Similarly, Singh (2018) proposed a
colour-slicing approach for detecting blast disease
in paddy. In this approach, RGB images were first
converted into the HSI colour space, and then the
diseased regions were isolated through colour
slicing while suppressing the unaffected parts.
When compared with edge-based
boundary detection techniques such as Sobel and
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Canny, this approach achieved an accuracy of
96.6%. Furthermore, Khan et al. (2019) proposed
preprocessing, spot segmentation with feature
extraction, and classification as the new stage
pipeline in identifying and recognising apple leaf
diseases. In the preprocessing stage, a hybrid
enhancement technique was employed by
combining 3D box filtering, decorrelation, 3D
Gaussian, and 3D median filters to improve the
quality of diseased regions on the leaves. Lesion
segmentation is then carried out using a strong
correlation-based approach, further refined
through  Expectation  Maximisation  (EM)
segmentation.

For feature representation, colour,
colour histogram, and Local Binary Pattern (LBP)
features were combined using a parallel fusion
strategy. These features were subsequently
optimised with a genetic algorithm before
classification was performed using a One-vs-All
Multi-class  Support Vector Machine. The
methodology was evaluated on the PlantVillage
dataset across four categories: healthy leaves,
Black rot, Rust, and Scab. The results indicated
that the proposed approach achieved improved
classification accuracy compared to existing
methods. The study highlighted that effective
preprocessing contributes significantly to feature
quality, thereby enhancing overall recognition
performance. Basavaiah and Arlene (2020)
focused on creating an efficient approach for
detecting tomato leaf diseases with an emphasis
on boosting classification accuracy while
minimising computational cost.

The key innovation lies in combining
different feature sets to enhance recognition
performance. Specifically, colour histograms, Hu
Moments, Haralick features, and Local Binary
Patterns were extracted and applied in both
training and testing stages. For classification,
decision tree and random forest algorithms were
employed. Experimental findings revealed that
random forest delivered superior results
compared to decision trees, achieving an
accuracy of 94%, while the decision tree method
reached 90%.

Ahmad et al. (2021) introduced an
automated system for detecting plant diseases

through a structured process comprising image
pre-processing, segmentation of infected regions,
extraction of colour and texture features using the
Grey-Level Co-occurrence Matrix  (GLCM),
feature selection, and classification. A total of six
colour and twenty-two texture features were
evaluated, with support vector machines applied
for one-vs-one disease classification. The
approach achieved a high accuracy of 98.79%
(£0.57) under tenfold cross-validation, while
testing on a self-collected dataset yielded 82.47%
accuracy for disease recognition and 91.40% for
differentiating healthy from infected leaves. Patil et
al. (2024) presented a content-based image
retrieval (CBIR) framework designed for detecting
and classifying leaf diseases by combining colour
and texture features. The system applied
advanced image processing techniques to
enhance accuracy. The developed system was
tested primarily on maize leaves affected by blight
and rust, two diseases known for their prevalence
and impact on yield. Experimental evaluation
shows a detection accuracy of 98.33%,
demonstrating its reliability for precision
agriculture. The dual use of texture and features
enhances disease characterisation, enabling the
system to distinguish between multiple diseases
with high precision.

Li et al (2025) presented an automated
system for identifying apple leaf diseases using
image processing, artificial intelligence, and ant
colony optimisation (ACO). The method involved
background removal, diseased area detection,
extraction of texture, colour, and shape features,
feature selection with ACO, and final classification
using an SVM. The results showed an overall
accuracy of 92.5%, with texture features
contributing most to performance. The approach
demonstrates an effective and scalable solution
for accurate disease detection in precision
agriculture. Nevertheless, colour-based
approaches often struggle with reliability because
leaf colour can be influenced by external factors
such as lighting conditions, camera quality, and
background noise. In addition, different diseases
may produce similar colour changes, making it
difficult to distinguish between them using colour
information alone. As a result, this method may

Corresponding author: Monday Abutu Idakwo
B4 mondiouf@gmail.com

Department of Computer Engineering, Faculty of Engineering, Federal University of Lokoja.
© 2025. Faculty of Technology Education. ATBU Bauchi. Al rights reserved


http://www.atbuftejoste.net/
mailto:bakarihenry341i@gmail.com

(CLLITPS

"/,
\ A JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025

E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www atbuftejoste.com.ng

lead to reduced accuracy and poor generalisation
when applied in diverse real-world environments.

Texture and Shape-Based Features for
Disease Detection

The shape-based characteristics of
leaves are another feature used in detecting plant
disease. Islam et al. (2017) proposed a method
for detecting potato diseases (late blight, early
blight, and healthy leaves) by first masking the
background and healthy green regions using
thresholds in the Lab* colour space. The region of
interest was then isolated, and texture features
from the GLCM (e.g., contrast, correlation,
homogeneity, energy) along with statistical
features (mean, entropy, standard deviation,
skewness) were extracted. A multiclass SVM
classifier was trained using the PlantVillage
dataset; however, challenges included difficulties
in threshold selection, a small dataset size, and
uniform backgrounds, which limited its real-world
applicability. Similarly, Bhimte et al. (2018) applied
K-means clustering for segmentation, followed by
wavelet transforms, PCA, and machine learning
classifiers (BPNN, SVM) to detect cotton plant
diseases. Their models achieved accuracies of
97% and 98.46%, respectively, but were trained
on limited datasets, and feature selection
remained a significant challenge.

Zhang et al. (2018) introduced a hybrid-
based approach for plant leaf disease
segmentation and recognition by integrating
superpixel clustering, K-means clustering, and a
pyramid of histograms of oriented gradients
(PHOG). In the framework, diseased leaf images
were first divided into compact superpixels, after
which K-means clustering was applied to isolate
lesion regions within each superpixel. PHOG
features were then extracted from the colour
components and grayscale version of the
segmented images, and the resulting descriptors
were combined into a single feature vector.
Experimental validation on two plant disease
image datasets demonstrated that the method
achieved effective segmentation and accurate
recognition, highlighting its potential as a practical
solution for smart agricultural monitoring.

Furthermore, Zang et al. (2019)
employed a hybrid clustering technique, where
colour images of leaves were first divided into
compact, uniform superpixels. These superpixels
served as clustering cues that enhanced the
efficiency and speed of the expectation
maximisation (EM) algorithm. Using EM, diseased
regions were then accurately separated from each
superpixel. Experimental evaluations, along with
comparisons to existing methods, confirmed that
this technique achieved fast and precise
segmentation, making it highly effective and
valuable for practical applications in plant disease
detection. To resolve the redundancy or irrelevant
features which often reduce the accuracy and
efficiency of plant disease models, Kumar et al.
(2020) proposed an Exponential Spider Monkey
Optimisation (Exponential SMO) approach for
selecting the most relevant features from SPAM-
generated data. The refined feature set was
processed using an SVM to distinguish between
healthy and diseased plants. Experimental results
show that the Exponential SMO enhances both
computational efficiency and classification
accuracy.

Mathew et al. (2021) developed an
approach for classifying three major foliar
diseases in banana plants using local texture
features. The process begins with image
enhancement and colour-based segmentation to
isolate diseased regions, followed by conversion
of the segmented images into transform domains
through DWT, DTCWT, and Ranklet transforms.
Texture features were extracted using LBP and its
variants (ELBP, MeanELBP, and MedianELBP)
and evaluated with five different classifiers under
a ten-fold cross-validation scheme. Results show
that ELBP features derived from the DTCWT
domain achieved the highest performance,
recording 95.4% accuracy alongside strong
precision, sensitivity, specificity, and F-score
values. The combination of DTCWT and ELBP
features significantly outperforms conventional
feature extraction techniques, enabling accurate
and early detection of fungal diseases in banana
leaves.

Archana et al. (2022) presented a
modified K-means segmentation approach that
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isolated infected regions in rice leaves, followed
by the extraction of colour, texture, and shape
features. A novel SVM-based probabilistic neural
network (NSVMBPNN) was employed for
classification, outperforming naive Bayes, SVM,
and PNN. Validated with fivefold cross-validation,
the method achieved high accuracy, with up to
99.20% for healthy leaves and above 95% for
various rice diseases. Wang et al. (2023)
investigated early detection of grey mould in
strawberries  using  hyperspectral  imaging.
Spectral features, vegetation indices, and textural
features were extracted and refined through
feature selection approaches. Machine learning
models (ELM, SVM, and KNN) achieved strong
results, with combined feature models reaching
93.33-96.67% accuracy. The study confirms that
integrating multiple features significantly improves
early and accurate recognition of grey mould in
strawberry leaves. Ahmad et al. (2024) introduced
a new feature descriptor, the Local Triangular-
Ternary Pattern (LTriTP), for detecting plant leaf
diseases from images.

The method uses triangular shape
descriptors and a dynamic threshold to capture
detailed texture information, while a Triangular
Histogram of Gradient (T-HOG) ensures
orientation invariance by analysing gradient
changes in multiple directions. By fusing LTriTP
and T-HOG features, the approach improves
disease recognition across six tomato leaf disease
classes from the PlantVillage dataset. Compared
with established techniques such as Local Binary
Pattern and Local Ternary Pattern, the proposed
method achieved superior classification accuracy,
ranging from 94.50% to 97.80%, with error rates
as low as 2.03%. Tripathi et al. (2025) presented
a hybrid classification model that utilises a stage-
based pipeline: preprocessing with Gaussian
filtering, segmentation using the MBIRCH
framework, feature extraction (including GLCM,
ILGBHS, colour, shape, and deep features via
VGG16 and AlexNet), and classification. The
hybrid model combined Bi-GRU and DCNN with
transfer learning for the plant disease predictions.

Overall, shape- and texture-based disease
detection methods reveal several recurring issues.
Preprocessing steps are often extensive, which

adds to the overall complexity of the process.
Segmenting diseased regions in cluttered or
natural backgrounds also remains a significant
challenge. In addition, feature extraction and
selection tend to be labour-intensive, particularly
when working with large datasets. Furthermore,
many studies rely on small, uniform datasets with
limited disease categories, thereby restricting the
generalisability of the results. Generally, the
classical machine methods in plant disease
symptom detection from their image often face
challenges in recognising subtle disease
symptoms, detecting early-stage infections, and
handling complex, high-resolution images
effectively (Idakwo et al. 2024). Thus, it was often
brittle and failed to generalise to complex, real-
world conditions. The breakthrough came with the
application of Convolutional Neural Networks
(CNNs), which automatically learn hierarchical
and discriminative features directly from raw pixel
data. The seminal work of Ferentinos (2018),
which utilised a large dataset of leaf images
(PlantVillage), demonstrated that CNNs could
achieve accuracy exceeding 99% in classifying a
wide range of diseases under controlled
conditions. This study served as a proof-of-
concept and ignited widespread research in the
area.

Identification and Classification

In every plant disease detection system,
identification and classification are the two
interrelated tasks that are commonly performed.
Identification entails determining whether a plant
is healthy or diseased, while classification assigns
the diseased sample to a specific category, such
as bacterial blight, grey mildew, or leaf curl in
cotton plants. These processes form the
foundation of intelligent agricultural monitoring
systems, where accurate diagnosis directly
influences treatment strategies, yield protection,
and resource management.

To evaluate the effectiveness of
identification and classification models, a range of
performance metrics is employed. The confusion
matrix provides a detailed account of correct and
incorrect predictions across all classes, enabling
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the detection of patterns in misclassification,
especially between visually similar diseases.

1. Accuracy evaluates the overall proportion
of correctly identified samples, making it
useful for the initial healthy-versus-diseased
identification stage. However, accuracy
alone may be insufficient in cases of class
imbalance, where certain diseases occur
less frequently. Accuracy is mathematically

expressed as given equation (1)
TP+TN

Acc = ————— (1
TP+TN+FP+FN
Where Acc refers to the accuracy
TP is a true positive
TN is a true negative
FP is a false positive
FN is a false negative
2. Precision is particularly relevant during
classification, as it quantifies how many
samples predicted as belonging to a
specific disease category are actually
correct. This reduces the likelihood of false
alarms. Precision is mathematically given
by equation (2)

=—X
Pre TP T FP 100 2)

Where Pre is precision
3. Sensitivity or Recall: On the other hand,
recall (sensitivity) is essential in disease
identification, as it ensures that the majority
of diseased plants are correctly detected,
minimising the risk of overlooking infections.
The recall is expressed as given in equation

(3)

Rec = 100

X
TP+ FN ®

Where Rec is Recall

4. F1 score: The F1 score, as the harmonic
mean of precision and recall, provides a
balanced assessment, which is especially
valuable when dealing with multiple disease
classes that exhibit similar visual features.
The F1-score is mathematically expressed
in equation (4)

F1 — score
2 * (Pre * Rec)

= 7 4
Pre + Rec )

Deep Learning Model-Based Plant Disease
Detection

In recent years, deep learning (DL) has
experienced rapid growth, particularly in computer
vision applications such as object detection,
pattern recognition, classification, and biometric
systems (Idakwo et al. 2023). DL models have
demonstrated remarkable success in image
recognition tasks, with notable achievements in
benchmarks such as the ImageNet Challenge.
These advances have also been extended to
agriculture, supporting applications in plant
ripeness and sorting systems (Idakwo et al. 2024),
disease detection (Ochijenu et al. 2025), pest
recognition (Suzauddola et al. 2025), fruit
classification (Wang et al. 2025), and weed
detection (Goyal et al. 2025).

A key advantage of DL is that it
eliminates the need for manual segmentation and
feature extraction, as models can automatically
learn discriminative features directly from raw
images (Idakwo, 2022). For instance, Kawasaki et
al. (2015) applied a convolutional neural network
to detect two cucumber diseases, melon yellow
spot virus (MYSV) and zucchini yellow mosaic
virus (ZYMV). They used image rotation to
augment the dataset and reported an accuracy of
94.9%, noting that larger datasets improved
performance. Their later work, Fujita et al. (2016),
extended this approach to identify seven
cucumber diseases using two CNN architectures
trained on images captured under varied
conditions, such as different lighting, distances,
and angles. Data augmentation methods,
including shifting, rotation, and mirroring, were
employed. CNN-2, trained on both high- and low-
quality images, achieved superior robustness,
with an overall accuracy of 82.3% under fourfold
cross-validation.

Sladojevic et al. (2016) utilised a fine-
tuned CaffeNet model for detecting 13 plant
diseases from 4,483 internet-sourced images,
achieving 96.3% accuracy with 10-fold cross-
validation. Similarly, Rangarajan et al. (2018)
applied AlexNet and VGG16 to tomato leaf
disease detection, reporting accuracies of 97.49%
and 97.29%, respectively. Mohanty et al. (2016)
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employed AlexNet and GoogLeNet to classify 26
diseases in 14 crops using 54,306 images. Their
GooglLeNet-based model achieved 99.35%
accuracy on RGB images in controlled laboratory
conditions. However, performance dropped
drastically (to 31%) when tested on field images,
highlighting challenges in generalisation.

Other studies extended CNN-based
approaches to different crops. Nachtigall et al.
(2016) achieved 97.3% accuracy in apple leaf
disease detection using AlexNet, while Amara et
al. (2017) applied a LeNet-based CNN to banana
leaf disease recognition, reporting accuracies of
98.61% on colour and 94.44% on grayscale
images under complex backgrounds. Hybrid
approaches, such as combining CNNs with
handcrafted  features,  further  improved
performance, as demonstrated in olive leaf
disease detection (Cruz et al. 2017). Comparative
studies have shown that pretrained models and
transfer learning significantly outperform models
trained from scratch. Ferentinos et al. (2018)
tested five CNN architectures  (AlexNet,
AlexNetOWTBn, GoogLeNet, Overfeat, and VGG)
on a dataset covering 58 plant disease classes,
achieving 99.53% accuracy with VGG16.
Similarly, Atole et al. (2018) applied a fine-tuned
AlexNet to rice plant diseases, achieving 91.23%
accuracy.

The inherent computational demand in
DL models due to large numbers of parameters
involved created a paradigm shift to lightweight
and mobile-friendly models to ease plant disease
detection, especially for small-holding farmers.
Ramcharan et al. (2019) used InceptionV3 and
MobileNet-based SSD for cassava disease
detection in both image and video datasets,
achieving accuracies of up to 98% with SVM
classifiers. Similarly, Agarwal et al. (2020)
presented a lightweight, efficient CNN model
which outperformed the classical CNN model and
pretrained models with an accuracy of 98.4%
when deployed on the benchmark PlantVillage
Dataset. Atila et al. (2021) demonstrated that
EfficientNet outperformed traditional CNNs,
achieving up to 99.97% accuracy with fewer
parameters and reduced training time. Bi et al.
(2022) designed a deployable MobileNet-based

model for apple leaf disease detection, with
competitive  accuracy but  much  lower
computational cost compared to InceptionV3 and
ResNet152.

To tackle the limitations of deploying
deep learning models for plant disease and pest
detection on compact devices with restricted
computational power. Wang et al. (2023)
proposed an Ultra-Lightweight Efficient Network
(ULEN) designed for image-based detection
tasks. The network comprises a deep feature
extraction module, which utilises residual depth-
wise convolution, and a classification module that
processes multi-scale features enhanced by a
spatial pyramid pooling layer. With a compact
structure of approximately 100,000 parameters,
ULEN offers an efficient solution tailored for
lightweight applications. Its performance was
validated on two publicly available plant image
datasets collected from both indoor and outdoor
environments, and tested on compact devices to
ensure adaptability across different scenarios.
The results indicate that ULEN achieves superior
classification accuracy compared to state-of-the-
art models while maintaining the lowest
computational complexity, making it a practical
choice for fast and flexible deployment in precision
agriculture.

Similarly, the larger data requirements
of CNNs and their inability to recognise object
pose and deformation have been demonstrated to
lower the system's performance. Therefore,
Idakwo et al (2024) utilised the equivariance
property of the capsule network to resolve the
inherent issues in CNNs. The developed
Improved Capsule Network model was
implemented in a tomato ripeness detection and
sorting system. The system effectively classifies
tomatoes into their respective ripeness stages
with an average performance of 99.56%, 96.20%,
96.20%, and 96.40% which are 3.17%, 2.69%,
3.10%, and 2.68% average improvement over
existing accuracy, precision, recall, and F1-Score,
respectively.

Moreover, the developed system was
subjected to defective, ripe, and unripe tomato
detection and achieved a 98.74% accuracy, which
was a 5.74% improvement over the state-of-the-
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art. The higher accuracy of the developed system
showed that the system can automate the
Agricultural sorting of tomatoes. While this system
assisted the local farmers in Lokoja, Kogi State,
Nigeria, the inherent plant tomato disease within
the region created a further need for a low
computational system that can effectively detect
plant disease. Thus, Ochijenu et al. (2025)
improved the capsule network by hybridising the
capsule network and yolo network to form the
Capsule-YOLO network architecture. The tomato
images from the PlantVilage Dataset and
PlantDoc Dataset were combined to form an
improved dataset with images from controlled and
uncontrolled environments.

The designed Capsule-Yolo network
automatically segments the tomato leaf images
and identifies diseases even when the images are

overlapping or occluded within complex
backgrounds. The model achieved outstanding
results, with an accuracy of 99.31%, a recall of
98.78%, a precision of 99.09%, and an F1-score
of 98.93%. These values reflect performance
gains of 2.91%, 1.84%, 5.64%, and 4.12%
compared to existing advanced approaches.
Furthermore, a user-friendly platform was created,
enabling farmers and users to upload images of
tomato plants for early disease detection, along
with recommendations for accurate diagnosis and
suitable treatment.

Dominant Deep Learning Architectures

Among the deep learning Architectures,
the dominant deep learning architecture is
summarised in Figure 4.

Deep Learning Architecture

i

v

Figure 4: Dominant Deep Learning Architecture

a. Standard CNNs: Custom-designed
architectures (e.g., with a few
convolutional, pooling, and fully
connected layers) are often used for
smaller, specific datasets.

b. Transfer Learning with Pre-trained
Models: This is the most prevalent
approach. Models pre-trained on
massive general-image datasets (e.g.,
ImageNet) like VGGNet, ResNet,

: : Y Beyond CNNs
Standard Pretrained Ilclgh;v&ielght Model
CNNs Model Model ode . .
Vision
» VGGNet » MobileNet > Tr?nsformers
(ViTs)
» ShuffleNet
» ResNet Generative
™ Adversarial Networks
» Inception » SqueezeNet (GANs)
|_» DenseNet || Object Detection Models
(YOLO, Faster R-CNN)
—» EfficientNet

Inception, DenseNet, and, more
recently, EfficientNet, are fine-tuned on
plant disease datasets. This approach
significantly reduces training time and
data requirements while achieving
state-of-the-art performance
(Ferentinos et al. 2018).

Lightweight  Architectures:  For
deployment on mobile devices or edge
computing platforms (e.g., drones,
smartphones), lightweight models like
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Table 5: Summary of Key Deep Learning Architectures in Plant Disease Detection

MobileNet, ShuffleNet, and SqueezeNet

contextual information (Yu et al.

are crucial. They offer a favourable 2023).

trade-off between accuracy and ii. Generative Adversarial
computational efficiency (Lu et al. Networks (GANs): GANs are
2023). primarily ~ used  for  data
Beyond CNNs: Several emerging augmentation, generating
architectures have been deployed in synthetic training images to

plant disease detection. Notably among
them are vision  transformers
(Dosovitskiy et al. 2020), generative

balance datasets and improve
model robustness (Cresswell et al.
2018).

adversarial networks, and object iii. Object Detection Models: For
detection models. tasks requiring localisation (e.g.,
i. Vision Transformers (ViTs): not only classify disease but also
Transformers, which use self- find it on the leaf), architectures like
attention  mechanisms,  have YOLO (You Only Look Once) and

shown remarkable performance in
vision tasks, often rivalling or
surpassing CNNs on large
datasets by capturing global

Faster R-CNN are employed.

The summary of the core deep learning
architecture in plant disease detection is shown in

Table 5.

Architecture Type Examples Key Advantages Common Use Cases
Standard CNN Custom 5-layer CNN Simplicity, low Small-scale, specific
computational cost studies

Pre-trained Models ResNet, VGG16, High accuracy, reduced State-of-the-art

(Transfer Learning) InceptionV/3, training time & data classification
EfficientNet needs

Lightweight Models MobileNet, High speed, low power Mobile apps, drone-
SqueezeNet consumption based scouting

Object Detection YOLOv5, Faster R- Provides disease Precision  spraying,
CNN localisation detailed analysis

Generative Models GANs (e.g., DCGAN, Data augmentation  Enhancing dataset

StyleGAN) handles class imbalance  diversity

METHODOLOGY: THE STANDARD PIPELINE
FOR A PLANT DOCTOR SYSTEM
Developing a DL-based plant disease
diagnosis system follows a structured pipeline.
This pipeline entails data acquisition, data
preprocessing, model selection and training, and 3.
evaluation.

1. Data Acquisition: Collecting images
from sources like lab settings, farms (via
smartphones), or aerial imagery (via
drones).

2.Data Preprocessing: Standardising
images  (resizing,  normalisation),

augmenting data (rotation, flipping,
scaling, colour adjustment) to increase
diversity and prevent overfitting, and
segmenting the region of interest (e.g.,
separating leaf from background).
Model Selection & Training: Choosing
an appropriate architecture (see Section
2.1). The model is trained on the
preprocessed data, using a loss function
(e.g., Cross-Entropy) and an optimiser
(e.g., Adam) to learn the mapping from
input images to disease classes.
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4. Evaluation: The trained model is tested
on a held-out validation set. Metrics like
accuracy, precision, recall, F1-score,
and confusion matrices are used to
assess performance.

5. Deployment: The final model is
integrated into an application, such as a
mobile app, a web platform, or an
onboard drone computer, to make
predictions on new, unseen data.

Deep Learning Model Open-Source
Framework

There are several Al frameworks which
are open source and available for practical
implementation of deep learning models. The
unique strength and limitations of these
frameworks in terms of their core technologies,
developers, hardware compatibility, functionality,
programming languages, and typical applications
serves as a practical guide for selecting the most
suitable tool for specific Al and DL applications.
TensorFlow is a robust open-source framework for
dataflow and differentiable programming (Géron
et al. 2022). It supports high-performance
computations across diverse hardware, including
memory units, GPUs, and TPUs. One of its core
strengths lies in its use of dataflow graphs, which
define how data is processed within a
computation, making it a preferred platform for
both machine learning and deep learning tasks.

In comparison, Keras serves as a high-
level DL library that operates on top of TensorFlow
(and other backends). It simplifies model
development through an intuitive API and offers a
wide range of pre-built layers and functions, such
as convolutional and pooling layers that can be
seamlessly integrated into models. Since
TensorFlow 2.4, the framework has combined
low-level model construction and training
capabilities with Keras’s user-friendly high-level
interface, enabling efficient and accessible model
development. In this research, the combined use
of TensorFlow and Keras has provided a practical
balance between flexibilty and ease of
implementation.

PyTorch, another widely adopted open-
source framework, offers extensive functionality

for building and training ML and DL models
(Imambi et al. 2021). It is particularly popular
among researchers for its flexibility and ease of
use. A distinguishing feature of PyTorch is its
dynamic computational graph, which allows
modifications during runtime, making it highly
suitable for experimentation and research. Unlike
TensorFlow’s earlier static graph approach, this
dynamic structure provides more intuitive
debugging and iterative model design. PyTorch
also supports distributed training, enabling
efficient scaling across multiple GPUs, and
includes pre-built modules such as convolutional
and recurrent layers for rapid prototyping. Its
strong community support, with shared pre-trained
models, datasets, and tutorials, further enhances
its practicality in DL research and applications.

Caffe (Convolutional Architecture for
Fast Feature Embedding), developed by the
Berkeley Vision and Learning Centre (BVLC) with
contributions from the open-source community, is
another established DL framework. It is
recognised for its speed and efficiency,
particularly in computer vision tasks such as
object detection, image classification, and video
summarisation. Implemented in C++ with a Python
interface, Caffe integrates well with scientific
computing libraries like NumPy and SciPy,
providing both performance and flexibility. Its
strength lies in highly optimised convolutional
operations, which are crucial for visual recognition
tasks. Furthermore, Caffe supports a variety of DL
architectures, including CNNs, RNNs, and
Transformer-based networks, while also offering
pre-defined layers and functions that simplify
model design (Kumar & Misra, 2024).

Theano, developed by the Montreal
Institute for Learning Algorithms (MILA) at the
University of Montreal, was one of the pioneering
open-source DL frameworks (Mohialden et al.
2024). It is designed for efficient mathematical
computation, particularly in training deep models
on both CPUs and GPUs. Theano’s hallmark
feature is symbolic differentiation, which enables
precise and efficient gradient computation during
model training (Shoaib et al. 2023). It also
automates  optimisation and differentiation
processes, allowing for more scalable training of
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complex models. Implemented in Python, Theano
integrates smoothly with scientific computing
libraries such as NumPy and SciPy, making it both

powerful and versatle for  numerical
experimentation. The popular artificial intelligence
framework is presented in Table 6.

Table 6: Popular Artificial Intelligence Frameworks Comparison

Technology Developer Aucxiliary Devices Language
TensorFlow Google CPU, GPU, TPU, Mobile Python

PyTorch Facebook CPU, GPU Python

ONNX Runtime Microsoft CPU, GPU, TPU, Edge Python

MXNet Amazon CPU, GPU, TPU, Mobile Python, R, C++, Scala
CNTK Microsoft CPU, GPU Python

Challenges and Limitations

Despite impressive results, several
challenges impede the widespread adoption of
these systems:

1. Data Limitations: Models require massive,
high-quality, ~and accurately labelled
datasets. Real-world data is often
imbalanced (few examples of rare diseases),
contains complex backgrounds, and varies
greatly in lighting, angle, and leaf age. These
complexities can hinder model generalisation
and robustness.

2. Generalisation and Robustness: A model
trained on one dataset (e.g., lab images on a
plain background) often performs poorly on
pictures from a different source (e.g., a
smartphone photo in a field). Overcoming
this domain shift is a major hurdle.

3. Early Detection: Most systems are trained
to identify clear symptoms. Detecting
diseases at very early, pre-symptomatic
stages remains extremely challenging.

4, Multiple  Diseases and  Nutrient
Deficiencies:  Differentiating  between
diseases with similar visual symptoms and
distinguishing disease symptoms from
nutrient deficiencies or pest damage is a
complex task.

5. Explainability (XAl): Deep learning models
are often black boxes. Farmers and
agronomists need to understand why a
diagnosis was made (e.g., which parts of the
leaf were most influential) to trust the
system's output.

Future Directions and Conclusion

The future of the Al Plant Doctor lies in
addressing current limitations and exploring new
frontiers:

1. Multimodal Learning: Integrating visual
data with other sensor data (eg.,
hyperspectral imagery, weather data, soil
sensors) to improve accuracy and enable
earlier detection.

2. Explainable Al  (XAl): Incorporating
techniques like Grad-CAM or LIME to provide
visual explanations for model predictions,
building user trust and providing agronomic
insights.

3. Unsupervised and Few-Shot Learning:
Developing models that can learn from
unlabeled data or require very few examples
of a new disease to learn it, mitigating data
scarcity issues.

4. Edge Al and Real-Time Processing:
Optimising  models  for  ultra-efficient
inference on low-power devices, enabling
real-time diagnosis directly in the field without
cloud connectivity.

5. Large-Scale Real-World Deployment:
Moving beyond academic benchmarks to
large-scale field trials that validate economic
and agronomic impact.

CONCLUSION

The integration of deep learning into
plant pathology represents a true paradigm shift.
Plant Doctor systems have evolved from a
theoretical concept to a practical tool with
demonstrable success in controlled environments.
While challenges in generalisation, data scarcity,
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and explainability persist, the trajectory of
research is clear. By fostering collaboration
between computer scientists, agronomists, and
farmers, the future promises robust, accessible,
and trustworthy Al systems that will empower
growers with timely and precise diagnostic
capabilities, ushering in a new era of sustainable
and productive precision agriculture.
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