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ABSTRACT

Deep learning has transformed computer-aided medical image :SJCI/ZL/EJEFO

diagnosis with record-breaking performance on a range of tasks such  Received: Ag;il, 2025

as the detection of tumors, segmentation of lesions, and classification  Received in revised form: May, 2025
of diseases. However, the dominance of extremely complex neural — Accepted: August, 2025
architectures—most prominently convolutional neural networks ~ Published online: September, 2025
(CNNs), vision transformers (ViTs), and future foundation models—  keyworps

has generated anxiety about their "black-box" status. The primary  Artificial Intelligence; Deep Leaming;
challenge is no longer whether artificial intelligence (Al) will match or ~ Explainable Al; Medical Imaging;
even surpass clinicians in generating diagnostic decisions, but ~Teproduciility; Trust

whether these models can be trusted in high-risk clinical practice. This

review discusses explainable artificial intelligence (XAl) as the path to

filling the trust deficit between technical innovation and medical

adoption. We categorize XAl methods into model-specific methods,

i.e., attention mechanisms and explainable architectures, and post-

hoc methods such as SHAP, LIME, Grad-CAM, and counterfactual

explanations, and examine critically their strengths and weaknesses

in medical imaging. Beyond technical quality, the review emphasizes

clinical utility, asking if explanations enhance decision-making, reveal

biases, or enable human-in-the-loop processes. We further examine

open issues such as reproducibility of explanation, absence of

standard benchmarks, and growing need to adapt XAl frameworks to

future architectures like diffusion and multimodal foundation models.

By highlighting both progress and the long-standing gaps, this paper

presents a path forward for aligning deep learning innovations with

clinical trust, usability, and regulatory preparedness.

INTRODUCTION

Deep learning has revolutionized
medical image analysis, allowing top-of-the-line
performance on tasks from tumor detection to

radiology, and pathology (Litiens et al., 2017;
Shen et al., 2023). However, despite these
phenomenal accomplishments, adoption of
artificial intelligence (Al) systems in healthcare

organ segmentation and disease classification.
Convolutional neural networks (CNNs) and, more
recently, vision transformers (ViTs) have achieved
performance that is equal to or surpasses expert
clinicians in domains such as dermatology,

clinics remains low. A reason is the "black-box"
nature of deep learning models that renders
diagnostic decision-making opaque and causes
problems with safety, accountability, and trust
(Tjoa & Guan, 2021; Amann et al., 2022).
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The boundaries of research have shifted
from merely being state-of-the-art precise to
addressing transparency, explainability, and
fairness issues. Clinicians are not prepared to
provide life-altering decisions based on black-box
models, and regulatory environments increasingly
demand explainability as a prerequisite for
medical use of Al (Samek et al., 2021; Holzinger
et al., 2022). As a consequence, Explainable Al
(XAl) has emerged as one of the most important
research areas, with the aim of developing
transparent, interpretable, and  clinically
translatable deep models. XAl is a wide-area field
that encompasses everything from model-specific
methods like transformers' attention mechanisms
to post-hoc methods like SHAP, Grad-CAM, and
counterfactual  explanations. ~ Nevertheless,
concerns have been brought up in terms of their
stability, reproducibility, and real-world practicality
within clinical procedures (Arrieta et al., 2020; Wu
etal., 2023).

This review critically evaluates the field
of deep learning for computer-assisted medical
image diagnosis with special emphasis on
explainability. Unlike earlier reviews, which largely
dealt with model performance and benchmark
accuracy, this work puts the role of the transition
from performance to trust at center stage.
Specifically, it categorizes XAl methods, evaluates
their applicability in clinical practice, and touches
upon open issues like explanation reproducibility
and interpretability method benchmarking. The
review also considers the effects of emerging
architectures such as diffusion models and
foundation models that require new paradigms of
explainability. Through this process, this paper
aims to provide a map to the bridging of the trust
gap and the establishment of the integration of Al
systems into daily clinical practice.

Background and Evolution of Deep Learning In
Medical Imaging

Deep learning has also experienced
significant advances in the field of medical
imaging in the past decade. Early success was
dominated by convolutional neural networks
(CNNs) and achieved record-breaking success in
areas such as diabetic retinopathy diagnosis, lung

disease categorization, and histopathology
analysis (Esteva et al., 2017; Kermany et al.,
2018). These models demonstrated that, given
sufficient labeled data, Al models can match or
even surpass the diagnostic accuracy of human
experts. However, much of this work prior to 2020
focused primarily on performance metrics such as
accuracy, sensitivity, and specificity with minimal
attention to the interpretability or clinical
usefulness of the models.

After 2020, the region shifted towards
mitigating the disadvantages of CNN-based
approaches.  Vision  transformers  (ViTs)
introduced new architectures founded on self-
attention mechanisms rather than convolution,
enabling the encoding of long-range
dependencies in medical images (Dosovitskiy et
al.,, 2021; Raghu et al., 2021). Experiments have
shown that ViTs have the potential to outperform
CNNs in certain diagnostic tasks, particularly
when large dataset sizes are utilized to train them
(Chen et al., 2022). At the same time, the
emergence of self-supervised learning and
multimodal foundation models has opened up new
pathways through which models can access
gigantic volumes of unlabeled medical and non-
medical data for pretraining (Azizi et al., 2023;
Moor et al., 2023). All these are a revolution not
only in architecture but also strategy, when it
comes to data, from task-specific training to
general-purpose pretraining supplemented with
domain adaptation.

Despite these advances, concerns over
the "black-box" character of deep learning models
have grown in tandem with them. The more
powerful models are, the less they can be
understood, the larger the gap becomes between
technical adeptness and clinical assurance. The
deficit in transparency has suppressed clinical
adoption, with clinicians demanding systems that
not only work well but also provide transparent
explanations of their findings (Amann et al., 2022;
Holzinger et al., 2022). The new conflict of
accuracy versus trust has driven interest in
explainable Al (XAl), opening the door to a new
generation of research to bridge the explainability
gap in medical imaging
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Categories of Explainability Techniques in
Medical Imaging

Explainability of medical imaging deep
learning can be generally divided into three:
model-specific, post-hoc, and hybrid or novel
methods. Each category is tackling the problem of
interpretability from a different perspective, having
unique strengths and weaknesses regarding
clinical usefulness.

Model-Specific Approaches

Model-level explainability is achieved by
designing architectures in which interpretability is
inherent in the architecture. In CNNs, attention
modules and saliency maps highlight regions of an
image making the most significant contribution to
predictions (Zhou et al., 2016; Jetley et al., 2018).
Vision transformers (ViTs) provide attention
weights by design, which can be visualized to
show how diagnostic decisions are influenced by
different image patches (Dosovitskiy et al., 2021;
Chen et al, 2022). Such methods are
computationally efficient in that explanations are
accessed at inference time rather than through
additional processing. They are likely to suffer
from oversimplification, and the clinical usefulness
of attention maps remains debatable (Raghu et
al., 2021).

Post-hoc Explainability Techniques

Post-hoc methods build explanations
after a model has been trained and leverage the
model as a black box. Popular strategies include
gradient-weighted class activation mapping
(Grad-CAM) (Selvaraju et al., 2017), integrated
gradients (Sundararajan et al., 2017), and
perturbation-based methods such as LIME
(Ribeiro et al., 2016) and SHAP (Lundberg & Lee,
2017). These methods have also been widely
applied to medical imaging studies, providing
heatmaps or importance weights of the features
that are easily understandable by clinicians along
with original images. Though flexible, post-hoc
methods can be unreliable—different runs can
generate different explanations—and fail to
capture the true model decision-making process
(Adebayo et al., 2018; Wu et al., 2023)..

Hybrid and Novel Methods

Recent years have seen the emergence
of hybrid approaches that combine model-specific
and post-hoc strategies, or introduce new
paradigms of interpretability. Counterfactual
explanations, for instance, show how small
changes in the input (e.g., removing a lesion)
would alter the prediction (Ghosal et al., 2023).
Concept-based  explanations map  model
decisions to human-understandable clinical
concepts, such as tissue texture or lesion
boundary (Kim et al., 2018; Yeh et al., 2022).
Additionally, explainability is increasingly being
integrated into foundation and diffusion models,
where interpretability must scale to massive
multimodal architectures (Moor et al., 2023). While
promising, these hybrid methods are still in early
stages of clinical validation, and their usability for
everyday medical practice remains uncertain.

Evaluating Clinical Utility of XAl

The ultimate test of XAl for medical
imaging is not whether it produces pretty
heatmaps or mathematically sound feature
attributions, but whether the explanations
enhance clinical decision-making. While technical
metrics such as fidelity and sparsity are widely
used to evaluate interpretability, they provide little
evidence of the actual usefulness of explanations
in healthcare (Doshi-Velez & Kim, 2017).
Clinicians require explanations that are not only
accurate but also stable, reproducible, and
contextually relevant.

Supporting Clinical Decision-Making

Several studies have validated that
explanations can improve diagnostic confidence
and efficiency. For instance, heatmaps generated
by Grad-CAM helped radiologists better and
quicker localize pneumonia in chest X-rays (Arun
et al,, 2021). Vision transformer attention maps
have been shown to detect relevant retinal regions
in diabetic retinopathy screening and assist
clinicians in validating automated diagnoses
(Chen et al., 2022). But they depend on the task:
while some explications affirm trust, others tend to
divert or even mislead when inappropriately
matched to clinical reasoning.
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Identifying Biases and Failure Modes
Explanations also play a crucial role in
unveiling hidden biases in medical data. Wu et al.
(2023) showed that saliency maps revealed
spurious correlations between chest drains and
pneumothorax predictions in CNNs, highlighting
risks of algorithmic shortcuts. Similarly, Ghassemi
et al. (2021) emphasized that XAl can unveil
biases related to demographic or institutional
differences, which, if ignored, may continue to
compound health disparities. Through the
exposure of these biases, XAl provides an avenue
to more equitable and secure clinical Al systems.

Human-in-the-Loop Integration

More and more work examined human-
in-the-loop designs where clinicians and Al
systems collaborate in real time. In such settings,
explanations serve as a channel of
communication by which physicians can ask
questions about model outputs and override
choices when necessary (Tonekaboni et al., 2019;
Amann et al., 2022). This collaborative model
builds on static interpretability to dynamic usability
but raises new challenges. Explanations must be
concise enough not to overload the mind but rich
enough to support necessary clinical decisions.
Finding a balance between these demands is an
open difficult problem.

Reproducibility and Stability of Explanations

The least explored dimension of clinical
usefulness is most likely reproducibility.
Motivations can vary from run to run, model
checkpoint to checkpoint, or even on small input
data perturbations (Adebayo et al., 2018).
Instability erodes the clinicians' faith, and XAl tools
might turn unreliable in the real world. New
developments in  explanation  consistency
benchmarking are encouraging (Yang et al.,
2024), but the absence of standardized testing
frameworks continues to discourage real-world
deployment of XAl.

CHALLENGES AND OPEN QUESTIONS
Although significant progress has been

achieved, the use of explainable Al (XAl) in

medical imaging is constrained by numerous open

issues. These limit the reliability, reproducibility,
and long-term clinical deployment of explainable
deep learning models.

The Replication Crisis in XAl

Maybe the most pressing issue is
explanation  reproducibility. ~ Saliency map,
attribution-based, and  perturbation-based
explanations typically vary greatly over model
initializations, data sets, or even minor input
perturbations (Adebayo et al., 2018; Yeh et al.,
2022). Clinicians have no faith in a diagnostic
system that provides unstable and inconsistent
reasoning. Setting reproducibility standards for
XAl explanations in research settings is a critical
frontier.

Benchmarking the Quality of Explanations

In contrast to predictive performance,
for which accuracy or AUROC can be applied,
there is no unique consensus measure of
explanation quality. Fidelity, stability, and sparsity
are all widely used, yet these fail to capture clinical
utility (Doshi-Velez & Kim, 2017; Yang et al.,
2024). In the absence of benchmarking
frameworks, two explanation methods can
produce visually divergent results without any
obvious answer to which is clinically more useful.
Development of standardized benchmarks and
testing protocols is key to moving the field forward.

Bias Amplification and Safety Risks

XAl methods can inadvertently reveal
and reinforce implicit biases in training data.
Saliency methods, for example, can highlight
spurious correlations between irrelevant image
noise (e.g., surgical markers or instruments) and
outcomes (Wu et al., 2023). Without adequate
control, these explanations will be mistakenly
used as clinically significant features and amplify
biases and threaten patient safety. Avoiding these
dangers requires bias-aware training and careful
evaluation of explanations in diverse patient
populations.

Explainability for Emerging Architectures
The shift to vision transformers,
diffusion models, and multimodal foundation
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models introduces novel challenges. They are
radically different from CNNs, and their internal
representations may be bad fits for existing XAl
approaches (Moor et al, 2023). Building
explainability frameworks that scale with model

size but remain clinically interpretable is a key
challenge. Additionally, multimodal models that
integrate imaging with text or genomics data need
explanations that cross modalities and introduce a
further layer of complexity to interpretability.

Table 1. Summary of Related Works on XAl in Medical Imaging

Author(s), XAl Category Model(s) Medical Contribution Limitation Clinical
Year Used Imaging Utility
Domain Evidence
Zhouetal,  Model-specific CNN General Introduced Coarse resolution; No direct
2016 (localization CAM for limited to CNNs. clinician
tasks) identifying validation.
discriminative
regions.
Ribeiro et Post-hoc Model- General Proposed LIME ~ Unstable Not tested in
al.,, 2016 agnostic for local explanations; clinical
interpretability. computationally workflows.
heavy.
Selvaraju Post-hoc CNN Radiology (X-  Developed Heatmaps noisy, Limited;
etal.,, 2017 ray, CT) Grad-CAM for sometimes misaligned ~ mostly
visualizing with clinical features. experimental.
feature
activations.
Lundberg &  Post-hoc Model- Broad (EHR Introduced High computational Rarely
Lee, 2017 agnostic +imaging) SHAP for cost for large models.  evaluated
consistent with
feature clinicians.
attribution.
Doshi- Conceptual General Not specific Called for Framework-level; no N/A.
Velez & rigorous empirical validation.
Kim, 2017 interpretability
science.
Jetley et Model-specific CNN (with Radiology Introduced Interpretations not No clinician
al.,, 2018 attention) attention always clinically studies.
modules for meaningful.
interpretability.
Adebayo et  Critical evaluation CNN General Exposed No corrective N/A.
al.,, 2018 instability in solutions proposed.
saliency
methods
(“sanity
checks”).
Tonekaboni  Human-in-loop ML + DL Clinical Studied No Surveyed
etal., 2019 decision clinician implementation/testing  clinicians;
support expectations for  of methods. conceptual.
XAl
Arrieta et Review/Taxonomy  General Broad (inc. Comprehensive  Limited medical focus.  Indirect only.
al., 2020 medical taxonomy of
imaging) XAl methods.
Tjoa & Survey CNN, ViT Healthcare Surveyed XAl More taxonomic than Conceptual;
Guan, 2021 broadly applications in empirical. no clinical
medicine. trials.
Raghu et Model-specific ViTvs CNN  Radiology Compared Results dataset- No direct
al., 2021 interpretability specific. clinician
of ViTs vs testing.

CNNs.
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Author(s), XAl Category Model(s) Medical Contribution Limitation Clinical
Year Used Imaging Utility
Domain Evidence
Arunetal.,  Post-hoc CNN + Radiology Showed Grad- Task-dependent Yes, clinician
2021 Grad-CAM (CXR) CAMimproved  performance. validation in
pneumonia study.
localization.
Amann et Conceptual/Applied ML + DL Healthcare Explored Not empirically Interviews
al., 2022 broadly multidisciplinary  validated. with
perspectives on clinicians.
XAlin
medicine.
Chenetal.,  Model-specific CNN + Segmentation  Hybrid model Limited to No clinical
2022 Transformer  tasks with segmentation. testing.
(TransUNet) explainable
encoders.
Yehetal., Critical evaluation CNN, ViT Radiology Studied Few datasets No clinician
2022 reproducibility evaluated. studies.
of XAl
explanations.
Holzinger Conceptual General Broad Proposed Lacks large-scale Some
etal., 2022 causability adoption. validation via
scale for case studies.
explanation
quality.
Ghassemi Critical General Healthcare Argued current  Critique only; no N/A.
etal, 2021  commentary broadly XAlin medicine  alternatives proposed.
offers “false
hope.”
Azizietal.,  Model-specific ViTs Radiology, Demonstrated Limited small dataset No clinical
2023 Dermatology ~ robust, performance. workflow
generalizable testing.
ViTs.
Ghosal et Novel CNN, ViT Radiology Surveyed Early stage, limited No clinician
al.,, 2023 (Counterfactual) counterfactual clinical validation. validation
explanations in yet.
imaging.
Mooretal.,  Foundation models  Multimodal Radiology, Introduced Explainability methods  Still
2023 Pathology medical underdeveloped. research-
foundation level only.
models.
Wuetal., Critical evaluation CNN Radiology Assessed Focused on limited No clinical
2023 (CXR) stability of tasks. testing.
saliency
methods.
Shenetal, Review CNN, ViT Medical Reviewed DL General review, not N/A.
2023 imaging progress and XAl-focused.
challenges.
Yangetal, Benchmarking CNN, ViT Radiology Proposed Not yet widely No clinician
2024 benchmark adopted. validation.
metrics
(stability,
usability).
Ghosal et Hybrid CNN, ViT Radiology Applied Limited dataset No clinical
al.,, 2023 (Counterfactual + counterfactuals  testing. validation.
Post-hoc) for imaging
explanations.
Kosmidis et Applied clinical ML ICU data (not ~ Showed Not imaging-specific. Some clinical
al.,, 2025 (ensemble)  imaging) transparency in relevance.
LOS prediction.
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FUTURE DIRECTIONS

The second phase of explainable Al
(XAl) innovation in medical imaging must address
technical and clinical agendas. Future innovation
must move beyond the demonstration of
interpretability in controlled setups to assurances
that explanations are reliable, usable, and
meaningful in deployment healthcare contexts.

Standardized Benchmarks for Explanation
Quality

A critical step is the development of
standardized  benchmarks to  measure
explanations. Those measurements, fidelity,
stability, and sparsity, must be complemented by
clinically informed measurements, e.g., whether
explanations align with expert labels or improve
reader diagnostic performance in reader studies
(Yang et al., 2024). Open benchmark datasets
and protocols will be shared to facilitate
systematic comparison of XAl methods across
tasks and modalities.

Cross-Dataset Validation and Generalizability

The vast majority of XAl methods are
tested on one dataset and therefore represent a
generalizability concern. Cross-dataset validation
must be the priority for future efforts to establish
whether or not explanations generalize between
institutions, scanners, and patient populations.
This step is imperative to achieving regulatory
acceptance and allowing for widespread adoption
across diverse healthcare systems.

Human-Centered and  Workflow-Oriented
Design

Explanations must be clinician-focused.
Rather than producing dense or abstract
responses, XAl systems must prioritize usability
through seamless integration within clinician
workflows. Interactive, human-in-the-loop models
that allow clinicians to pose queries and critique
model responses are an attractive area of
research (Amann et al., 2022). Cognitive load due
to explanations should also be quantified by
research to verify whether or not explanations
enhance or degrade decision-making.

Explainability for Next-Generation Models

Emerging architectures such as
diffusion models and multimodal foundation
models require novel interpretability methods.
They capture complex, cross-modal
dependencies that are challenging for typical
saliency-based methods (Moor et al., 2023).
Future research must develop XAl techniques
tailored to such architectures, with the dual goal of
transparency and scalability.

Bridging Explainability with Fairness and
Safety

Finally, future work needs to npair
explainability with broader fairess, accountability,
and safety questions. By combining bias detection
with interpretability, XAl methods will be able to
detect and mitigate disparities in diagnostic
performance across demographic groups. This
combined solution will be critical to building
clinician trust and making medical Al systems both
successful and ethical.

CONCLUSION

Deep learning has  achieved
unprecedented success in computer-assisted
medical image diagnosis, but its clinical adoption
is hindered by a trust gap at its core. The shift from
"Can Al diagnose?" to "Should we trust Al in
diagnosis?" highlights the central position of
explainable Al (XAl) to bridge the gap between
technical ingenuity and clinical adoptability. This
review has categorized explainability strategies
into  model-specific, post-hoc, and hybrid
strategies and critically assessed their clinical
utility, reproducibility, and limitations.

By locating explainability at the center of
current issues, the paper highlights that precision
is no longer sufficient; transparency, stability, and
clinician trust are now the hallmark characteristics
of real-world success. Prospects moving forward,
the field must prioritize highest to standardized
benchmarks for explanations, cross-dataset
testing, and human-focused design to ensure
clinical applicability. While diffusion models and
multimodal foundation models become dominant
vision  transformers, new interpretability
frameworks will be required in order to guarantee
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that dominant architectures are trustworthy and
accountable. Finally, XAl development will depend
on cooperation between disciplines by Al
developers, clinicians, and regulatory bodies to
develop systems that are not only highly
performing but also safe, equitable, and
understandable. Closing the gap of trust is the way
toward fully harnessing the power of Al in medical
imaging.
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