



# Charging Forward: Mapping the Global Research Landscape of Electric Vehicle Infrastructure

A. Y. Sada

Department of Electrical and Computer Engineering, Baze University, Abuja, Nigeria

#### **ABSTRACT**

The global transition to electric mobility necessitates a robust charging infrastructure, a topic that has seen exponential growth in academic research. To navigate this expanding landscape, this study conducts a comprehensive scientometric analysis of 4,243 documents from the Scopus database (1994–2024). Using VOSviewer, we map publication trends, collaboration networks, and the intellectual structure of the field. The findings reveal a surge in publications since 2010, with the United States, India, Germany, and China as the most prolific contributors. Co-citation analysis identifies the foundational authors, while keyword co-occurrence analysis uncovers four primary thematic clusters: (1) Charging Technology and Hardware. (2) Grid Integration and Management, (3) Optimization and Planning, and (4) Policy and Socio-economics. Furthermore, a temporal analysis of keywords highlights a clear research trajectory, shifting from foundational concepts towards emerging frontiers like machine learning and wireless power transfer. This review provides a definitive map of the EV charging infrastructure research domain, offering valuable insights for researchers and policymakers shaping the future of sustainable transportation.

### **ARTICLE INFO**

Article History
Received: December, 2024
Received in revised form: February, 2025
Accepted: April, 2025
Published online: June, 2025

#### **KEYWORDS**

Electric Vehicle, Charging Infrastructure, Scientometric Analysis, VOSviewer, Smart Grid

### INTRODUCTION

The transition to electric vehicles (EVs) is a critical component of global strategies to decarbonize the transportation sector and achieve a clean energy transition (Zhang et al., 2021). Central to this transition is the development of a robust, accessible, and efficient charging infrastructure, which plays a pivotal role in overcoming barriers to EV adoption, such as range anxiety and convenience (Dadhwal et al., 2021). As the deployment of EVs accelerates, the complexity of planning and integrating charging infrastructure into existing power grids has grown, necessitating a multidisciplinary research approach that spans engineering, energy policy, economics, and computer science (Ozturk, 2010).

The academic literature on EV charging infrastructure has expanded rapidly, making it challenging for researchers and practitioners to keep abreast of the evolving knowledge

landscape. This inherent complexity underscores the need for advanced analytical tools to synthesize and map the vast body of research (Darko et al., 2020). Scientometric analysis offers a powerful methodology for systematically reviewing a research field, allowing for the quantitative assessment of publication trends, collaboration networks, and thematic evolution (Aria & Cuccurullo, 2017; Van Eck et al., 2010). By analyzing publication data, it is possible to identify influential works, authors, and institutions, and to visualize the intellectual structure of the research domain (Martinez et al., 2019).

While numerous studies have reviewed specific aspects of EV technology and energy saving (Dadhwal et al., 2021), a broad scientometric overview of the entire EV charging infrastructure field remains limited. This study aims to fill that gap by providing a comprehensive





analysis of the research landscape. The main objectives are to:

- 1. Illustrate the temporal growth of research in the field;
- Identify the most influential documents, journals, organizations, and countries;
- 3. Map the collaborative networks among key research actors;
- Uncover the dominant and emerging research themes through keyword analysis (San-Juan-Heras et al., 2024).

By providing a clear map of the current research landscape, this study offers valuable insights for the academic community and supports evidence-based decision-making for advancing sustainable electric mobility and energy planning (Pohekar & Ramachandran, 2004).

### **METHODOLOGY**

This study employs a scientific mapping approach to analyze the research outputs in the field of EV charging infrastructure from 1994 to 2024, based on publications indexed in the Scopus database. The methodology combines a bibliometric search with a scientometric analysis using VOSviewer software to visualize the results.

### **Data Collection**

The publication data for this review was extracted from the Scopus database, which is recognized for its extensive coverage of peer-reviewed literature across multiple disciplines (Aghaei Chadegani et al., 2013; Singh et al.,

2021). The search was conducted using the query string: (TITLE-ABS-KEY ("electric vehicle" "charging infrastructure")) for publications between 1994 and 2024. To ensure relevance, the search was limited to the English language and restricted to the subject areas of Engineering, Energy, Chemical Engineering, and Economics. This process yielded a final dataset of 4,243 documents, comprising articles, conference papers, reviews, and other document types.

### Science Mapping and Analysis

The bibliometric mapping was performed using VOSviewer (version 1.6.17), a software tool designed for creating and visualizing large-scale bibliometric networks (van Eck & Waltman, 2010). VOSviewer is adept at constructing networks based on co-authorship, co-citation, bibliographic coupling, and keyword co-occurrence, representing the relationships between items as nodes within a network (Eck & Waltman, 2014). The association strength normalization method was used to account for variations among nodes (Eck & Waltman, 2009).

To ensure the clarity and relevance of the network visualizations, minimum thresholds were applied to filter the data. These thresholds represent the minimum number of documents, citations, or co-occurrences required for an item to be included in the analysis, thereby focusing the maps on the most significant contributors and themes. The specific values used for each analysis type are detailed in Table 1.

Table 1: VOSviewer Thresholds

| Analysis Type          | Unit of Analysis                  | Counting<br>Method | Total | Threshold | Final  |
|------------------------|-----------------------------------|--------------------|-------|-----------|--------|
|                        | Documents (Citations)             | Full               | 3170  | 200       | 88(57) |
| Bibliographic Coupling | Sources (Documents) Organizations | Full               | 414   | 5         | 66     |
|                        | (Documents)                       | Full               | 2520  | 10        | 81     |
|                        | Countries (Documents)             | Full               | 99    | 5         | 66     |
| Co-citation            | Cited Authors                     | Full               | 1515  | 10        | 58     |
| Co-occurrence          | Author Keywords                   | Full               | 6084  | 20        | 48     |

The analyses conducted in this study include:

1. Bibliographic Coupling: This analysis was performed for documents, sources

Corresponding author: A. Y. Sada

<sup>&</sup>lt;u>abdullahi.sada@bazeuniversity.edu.ng</u>

Department of Electrical and Computer Engineering, Baze University, Abuja, Nigeria.

<sup>© 2025.</sup> Faculty of Technology Education. ATBU Bauchi. All rights reserved



### JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(2), JUNE, 2025 ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng



(journals), organizations, and countries. Two items are bibliographically coupled if they both cite the same third item, which helps identify clusters of related research (Bendigiri & Rao, 2023).

- Co-citation Analysis: This was used to identify influential authors. When two authors are cited together in the reference list of a third document, they are co-cited, indicating a thematic link between their work.
- Keyword Co-occurrence Analysis: This
  method was used to identify the main
  research themes. When keywords
  appear together in multiple publications,
  it signifies a strong conceptual link, and
  VOSviewer groups them into thematic
  clusters (San-Juan-Heras et al., 2024).

### **RESULTS AND DISCUSSION**

### **Overview of Publication Trends**

The field of EV charging infrastructure has experienced significant growth, as illustrated in Figure 1. Research output remained sparse until the mid-2000s, after which a steady increase began, culminating in an exponential rise from 2010 onwards. This rapid expansion aligns with the global push for sustainable transportation and a broader clean energy transition (Zhang et al., 2021). The surge in publications reflects a growing academic and industrial focus on addressing the challenges associated with the mass adoption of EVs, including grid stability, charging optimization, and the development of effective business models.

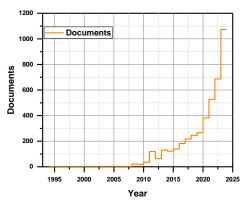
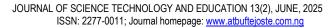



Figure 1: Publication trend on EV charging infrastructure


### **Analysis of Most Influential Documents**

The influence of a publication is often measured by its citation count, which reflects its impact on subsequent research (Eck & Waltman, 2014). Table 2 lists the top 10 most cited documents in the field. The leading paper by Yilmaz et al. (2013a), a review of battery charger topologies, has accumulated 2,726 citations, highlighting the foundational importance of charging technology in this domain. Other highly cited works address socio-economic factors influencing EV adoption (Sierzchula et al., 2014), grid integration challenges (Das et al., 2020), and the potential of vehicle-to-grid (V2G) technologies (Tomić & Kempton, 2007) The prominence of review articles in this list underscores their crucial role in synthesizing knowledge and guiding the direction of research in a rapidly evolving field.

Table 2: Top 10 documents by citation on EV charging infrastructure

| Document                  | Title                                                                                                                    | DOI                             | Document<br>Type | Citations |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|-----------|
| (Yilmaz & Krein, 2013a)   | Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles | 10.1109/TPEL.<br>2012.2212917   | Review           | 2726      |
| (Sierzchula et al., 2014) | The influence of financial incentives and other socio-                                                                   | 10.1016/j.enpo<br>I.2014.01.043 | Article          | 1094      |







| Document                   | Title                                                                                                        | DOI                                    | Document<br>Type | Citations |
|----------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|-----------|
|                            | economic factors on electric vehicle adoption                                                                |                                        |                  |           |
| (Das et al., 2020)         | Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review | 10.1016/j.rser.<br>2019.109618         | Review           | 917       |
| (Tomić & Kempton, 2007)    | Using fleets of electric-drive vehicles for grid support                                                     | 10.1016/j.jpow<br>sour.2007.03.0<br>10 | Article          | 910       |
| (Yilmaz & Krein, 2013b)    | Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces          | 10.1109/TPEL.<br>2012.2227500          | Review           | 894       |
| (A. Ahmad et al., 2017)    | A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles                               | 10.1109/TTE.2<br>017.2771619           | Article          | 856       |
| (Tu et al., 2019)          | Extreme Fast Charging of Electric Vehicles: A Technology Overview                                            | 10.1109/TTE.2<br>019.2958709           | Article          | 764       |
| (Su et al., 2012)          | A survey on the electrification of transportation in a smart grid environment                                | 10.1109/TII.20<br>11.2172454           | Review           | 724       |
| (R. R. Kumar & Alok, 2020) | Adoption of electric vehicle: A literature review and prospects for sustainability                           | 10.1016/j.jclep<br>ro.2019.11991<br>1  | Review           | 689       |
| (Kalghatgi, 2018)          | Is it really the end of internal combustion engines and petroleum in transport?                              | 10.1016/j.apen<br>ergy.2018.05.0<br>76 | Review           | 603       |

The bibliographic coupling analysis of these documents, shown in Figure 2, reveals distinct research clusters. For instance, the work of Yilmaz et al. (2013b) forms a large cluster

focused on the technical aspects of charging hardware, while another cluster around Sierzchula et al. (2014) connects research on policy, economics, and consumer behavior.

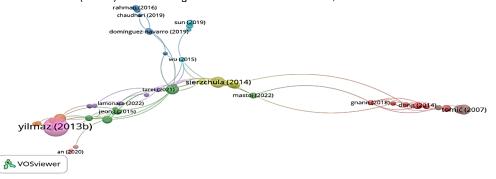



Figure 2: Bibliographic coupling of documents on EV charging infrastructure

Corresponding author: A. Y. Sada





## Leading Journals, Organizations, and Countries

### Journals

The analysis of publishing sources indicates that research on EV charging infrastructure is disseminated across a wide range of journals. As shown in Table 3, Energies is the most prolific journal with 143 documents, followed by the World Electric Vehicle Journal (110 documents). However, journals like

Transportation Research Part D: Transport and Environment and Applied Energy have higher citation counts despite fewer publications, indicating their significant influence in the field. The bibliographic coupling map in Figure 3 illustrates three main clusters of journals: an engineering and technology cluster (red), a transportation and environment cluster (blue), and an energy policy and sustainability cluster (green)

Table 3: Top 10 sources by documents on EV charging infrastructure

| Sources                                                   | Documents | Citations | Avg. pub.<br>Year | Links | Total link strength |
|-----------------------------------------------------------|-----------|-----------|-------------------|-------|---------------------|
| Energies                                                  | 143       | 3889      | 2021              | 65    | 2099                |
| World electric vehicle journal                            | 110       | 1702      | 2018              | 64    | 1101                |
| Transportation research part d: transport and environment | 99        | 7931      | 2020              | 59    | 2123                |
| IET conference proceedings                                | 78        | 97        | 2022              | 52    | 404                 |
| Sustainability (Switzerland)                              | 71        | 2003      | 2021              | 63    | 904                 |
| Applied energy                                            | 63        | 6107      | 2019              | 64    | 1035                |
| Energy                                                    | 54        | 3232      | 2020              | 63    | 960                 |
| Energy policy                                             | 47        | 5547      | 2018              | 57    | 988                 |
| Transportation research part c:                           |           |           |                   |       |                     |
| emerging technologies                                     | 46        | 4559      | 2019              | 54    | 1046                |

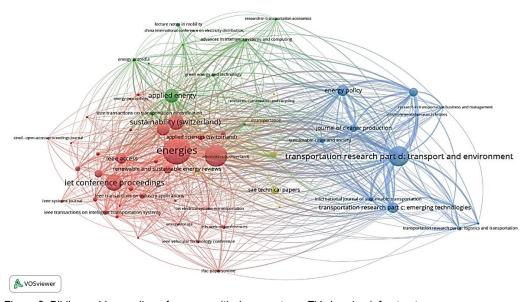



Figure 3: Bibliographic coupling of sources with documents on EV charging infrastructure

Corresponding author: A. Y. Sada

abdullahi.sada@bazeuniversity.edu.ng

Department of Electrical and Computer Engineering, Baze University, Abuja, Nigeria.





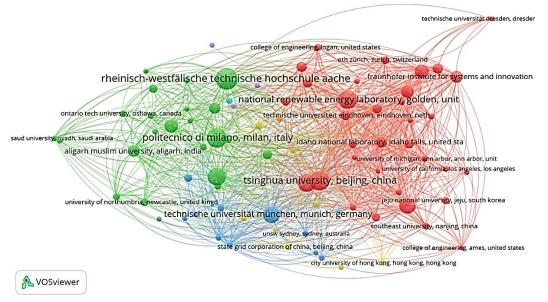
### Organizations and Countries

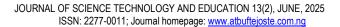
The institutional analysis highlights the global nature of EV infrastructure research. As shown in Table 4, German, Italian, and Chinese universities are among the most productive

institutions, with Rheinisch-Westfälische Technische Hochschule Aachen leading with 48 documents. The collaboration network between these organizations is visualized in Figure 4.

Table 4: Top 10 organizations by documents on EV charging infrastructure

| Organization                                            | Documents   | Citations | Avg.<br>pub.<br>Year | Links | Total link<br>strength |
|---------------------------------------------------------|-------------|-----------|----------------------|-------|------------------------|
| Rheinisch-Westfälische Tech                             | nische 48   | 1209      | 2019                 | 77    | 794                    |
| Hochschule Aachen, Aachen, Germany                      | y           |           |                      |       |                        |
| Politecnico Di Milano, Milan, Italy                     | 44          | 918       | 2021                 | 75    | 465                    |
| Tsinghua University, Beijing, China                     | 43          | 2029      | 2019                 | 78    | 808                    |
| National Renewable Energy Labo<br>Golden, United States | oratory, 40 | 2094      | 2019                 | 76    | 673                    |
| Indian Institute of Technology Delhi<br>Delhi, India    | , New 39    | 643       | 2022                 | 74    | 503                    |
| North China Electric Power Univ<br>Beijing, China       | versity, 38 | 1919      | 2018                 | 74    | 570                    |
| Technische Universität München, M<br>Germany            | Munich, 36  | 818       | 2020                 | 77    | 646                    |
| Oak Ridge National Laboratory, Oak United States        | Ridge, 35   | 1956      | 2017                 | 74    | 808                    |
| University Of California, Davis, Davis, States          | United 29   | 2191      | 2018                 | 67    | 583                    |
| Vrije Universiteit Brussel, Brussels, Bel               | gium 28     | 388       | 2018                 | 63    | 283                    |





Figure 4: Bibliographic coupling of organizations with documents on EV charging infrastructure

Corresponding author: A. Y. Sada

<u>abdullahi.sada@bazeuniversity.edu.ng</u>

Department of Electrical and Computer Engineering, Baze University, Abuja, Nigeria.







At the country level (Table 5), the United States is the most productive nation with 620 documents and the highest number of citations (35,226), underscoring its leading role in the field.

India, Germany, and China follow in terms of publication volume, indicating strong national research programs in these countries.

Table 5: Top 20 countries by documents on EV charging infrastructure

| Country        | Documents | Citations | Avg. pub. Year | Links | Total link strength |
|----------------|-----------|-----------|----------------|-------|---------------------|
| United States  | 620       | 35226     | 2018           | 65    | 20946               |
| India          | 488       | 10540     | 2022           | 65    | 15458               |
| Germany        | 391       | 8955      | 2019           | 65    | 10659               |
| China          | 377       | 16428     | 2020           | 65    | 14609               |
| United Kingdom | 180       | 6457      | 2020           | 64    | 7243                |
| Italy          | 165       | 3410      | 2020           | 64    | 6541                |
| Canada         | 133       | 5219      | 2020           | 65    | 6064                |
| Netherlands    | 110       | 4708      | 2019           | 64    | 4464                |
| South Korea    | 99        | 3269      | 2018           | 64    | 3529                |
| France         | 89        | 2188      | 2019           | 64    | 3340                |
| Australia      | 76        | 3218      | 2020           | 63    | 3299                |
| Sweden         | 76        | 4170      | 2019           | 62    | 3173                |
| Spain          | 65        | 2427      | 2019           | 62    | 2599                |
| Saudi Arabia   | 63        | 4623      | 2021           | 64    | 3128                |
| Belgium        | 55        | 1603      | 2018           | 61    | 2013                |
| Denmark        | 51        | 2283      | 2020           | 61    | 2521                |
| Japan          | 50        | 1707      | 2017           | 54    | 1188                |
| Malaysia       | 43        | 2482      | 2020           | 63    | 2538                |
| Switzerland    | 43        | 2237      | 2018           | 60    | 1593                |
| Austria        | 42        | 1379      | 2018           | 58    | 1548                |

The country collaboration network in Figure 5 shows a dense web of international partnerships, with the US, Germany, and China

acting as central hubs connecting researchers globally

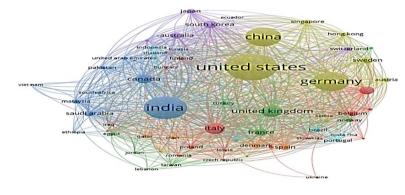



Figure 5: Bibliographic coupling of countries with documents on EV charging infrastructure

Corresponding author: A. Y. Sada

& VOSviewer

<u>■ abdullahi.sada@bazeuniversity.edu.ng</u>
 Department of Electrical and Computer Engineering, Baze University, Abuja, Nigeria.



### JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(2), JUNE, 2025 ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng



### **Co-citation Analysis of Authors**

The co-citation analysis reveals the intellectual pillars of the field, identifying the foundational scholars whose works are most frequently cited together by other researchers. This method effectively maps the intellectual structure of the domain. As shown in the network visualization in Figure 6 and detailed quantitatively in Table 6, authors like Willett M. Kempton (56 citations), Scott J. Hardman (47 citations), and

Donna T. Chen (43 citations) are among the most influential researchers. Their high co-citation frequency indicates that their foundational contributions to concepts like V2G technology, EV adoption behavior, and charging infrastructure planning are considered seminal. These authors form the core of the intellectual network, with their works serving as essential references and conceptual starting points for new research entering the field.

Table 6: Top authors by citations on EV charging infrastructure

| Author               | Citations | Author                                 | Citations | Author                                | Citations |
|----------------------|-----------|----------------------------------------|-----------|---------------------------------------|-----------|
|                      |           | Burnham, Andrew                        |           |                                       |           |
| Kempton, Willett M.  | 56        | J.                                     | 16        | Peterson, Scott B.                    | 12        |
| Hardman, Scott J.    | 47        | Green, Robert C.<br>Morrissey, Patrick | 16        | Soares, Joao P.                       | 12        |
| Chen, Donna T.       | 43        | J.                                     | 16        | Sweda, Timothy M.<br>Borlaug, Brennan | 12        |
| Dharmakeerthi, C.H.  | 38        | Bessa, Ricardo J.                      | 15        | A.<br>Caperello,                      | 11        |
| Pecas Lopes, Joao A. | 36        | Kuby, Michael J.                       | 15        | Nicolette D.                          | 11        |
| Ajanovic, A.         | 29        | Singh, B.P.                            | 15        | Dominic Savio, A.                     | 11        |
| Neubauer, Jeremy S.  | 29        | Al-Alawi, Baha M.                      | 14        | Gonzalez, Luiz G.                     | 11        |
| Carley, Sanya R.     | 25        | Emadi, Ali N.<br>Gautam, Deepak        | 14        | Putrus, Ghanim A.                     | 11        |
| Arias, Mariz B.      | 22        | S.                                     | 14        | Taylor, Jason A.                      | 11        |
| Hannan, M.A.         | 22        | Sanguesa, Julio A.                     | 14        | Williams, James H. Williamson,        | 11        |
| Richardson, David B. | 22        | Adler, Jonathan D. Daganzo, Carlos     | 13        | Sheldon S.<br>Wirasingha,             | 11        |
| Boulanger, Albert G. | 21        | F.<br>Mwasilu, Francis                 | 13        | Sanjaka G.                            | 11        |
| Foley, Aoife M.      | 21        | A.<br>Sarker, Mushfiqur                | 13        | Boesch, Patrick M.<br>F Shaaban,      | 10        |
| Alhazmi, Yassir A.   | 20        | R.<br>Sovacool,                        | 13        | Mostafa F.                            | 10        |
| Botsford, Charles W. | 20        | Benjamin K.                            | 13        | Hidrue, Michael K.<br>Sandy Thomas,   | 10        |
| Bradley, Thomas H.   | 20        | Bruckmann, G.<br>Bryden, Thomas        | 12        | C.E.                                  | 10        |
| Lam, Albert Y.S.     | 20        | S.                                     | 12        | Sivaraman, P.                         | 10        |
| Mohamed, Ahmed A.S.  | 17        | Dijkstra, E.W.                         | 12        | Smart, John G.                        | 10        |
| Bauer, Gordon S.     | 16        | Galus, Matthias D.<br>Needell, Zachary | 12        |                                       |           |
| Bonges, Henry A.     | 16        | Α.                                     | 12        |                                       |           |

Corresponding author: A. Y. Sada





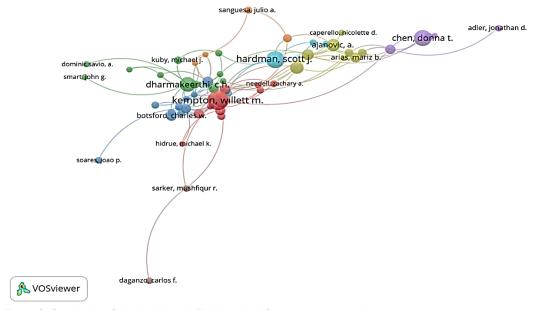



Figure 6: Co-citation of cited authors in EV charging infrastructure research

## Keyword Co-occurrence Analysis and Research Themes

The co-occurrence analysis of author keywords provides a map of the dominant research themes (San-Juan-Heras et al., 2024). Figure 7 visualizes this network, where the size of a node indicates the frequency of a keyword, and the lines represent their co-occurrence in publications. As detailed quantitatively in Table 7,

the most frequent keywords are "Electric vehicle (EV)," "Charging infrastructure," "Charging station," "Vehicle-to-grid," and "Smart grid." In the network visualization, the largest nodes, "electric vehicle (ev)" and "charging infrastructure," are positioned centrally, signifying their role as the foundational concepts connecting nearly all other research topics.

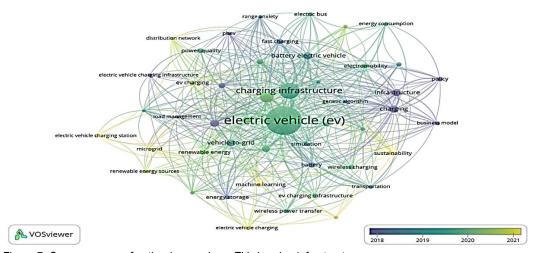



Figure 7: Co-occurrence of author keywords on EV charging infrastructure

Corresponding author: A. Y. Sada

<u>abdullahi.sada@bazeuniversity.edu.ng</u>

Department of Electrical and Computer Engineering, Baze University, Abuja, Nigeria.





A temporal analysis indicated by the color of the nodes in Figure 7, reveals the evolution of research focus over time. Foundational topics like "policy" are shaded in darker blue, indicating they are well-established areas (average publication year around 2018). In contrast, keywords appearing in yellow are the most recent, highlighting emerging research

frontiers (average publication year around 2021). These trending topics include "machine learning," "wireless power transfer," "sustainability," and "energy consumption." This color gradient illustrates a clear shift in the research landscape, moving from foundational policy and hardware concepts towards more advanced, data-driven, and sustainability-oriented solutions

Table 7: Top 10 Keywords on EV charging infrastructure

| Keyword                  | Occurrences | Avg. pub. Year | Avg. citations | Links | Total link strength |
|--------------------------|-------------|----------------|----------------|-------|---------------------|
| Electric vehicle (EV)    | 1542        | 2020           | 36             | 47    | 1448                |
| Charging infrastructure  | 476         | 2020           | 46             | 39    | 620                 |
| Charging station         | 229         | 2020           | 35             | 40    | 343                 |
| Battery electric vehicle | 102         | 2019           | 53             | 31    | 104                 |
| Vehicle-to-grid          | 96          | 2019           | 53             | 28    | 153                 |
| Charging                 | 94          | 2017           | 14             | 26    | 155                 |
| Infrastructure           | 93          | 2016           | 12             | 25    | 146                 |
| Smart grid               | 93          | 2017           | 37             | 33    | 146                 |
| Optimization             | 85          | 2020           | 41             | 33    | 148                 |
| Smart charging           | 77          | 2020           | 47             | 30    | 125                 |

The analysis reveals several key thematic clusters:

- Cluster 1: Charging Technology and Hardware: This theme centers on the technical aspects of charging systems. Keywords like fast charging, wireless charging, wireless power transfer, and battery are prominent. Research in this cluster focuses on developing faster, more efficient, and more convenient charging solutions, often linked to technological innovation systems (Weckowska et al., 2025).
- Cluster 2: Grid Integration and Management: This cluster addresses the challenges of integrating EVs into the power grid. Key terms include smart grid, vehicle-to-grid (V2G), power quality, and energy storage. This research explores smart energy management and forecasting models to manage the increased load from EV charging and leverage EVs as a distributed energy resource to support

- grid stability (T. Ahmad et al., 2020; Shashwat et al., 2023).
- 3. Cluster 3: Optimization and Planning: This area focuses on the strategic deployment of charging infrastructure, often using multi-criteria decision making (MCDM) approaches (A. Kumar et al., 2017; Pohekar & Ramachandran, 2004). Keywords like optimization, simulation, and load management are central. Studies here use modeling and algorithms to determine the optimal number, type, and location of charging stations to meet demand efficiently and cost-effectively.
- Cluster 4: Policy and Socio-economics:
   This theme examines the non-technical factors influencing the transition to electric mobility. Prominent keywords include policy, electric mobility, and electromobility. This research investigates the role of government incentives, user behavior, and

Corresponding author: A. Y. Sada

<u>abdullahi.sada@bazeuniversity.edu.ng</u>





economic viability in driving the development of charging infrastructure.

### **CONCLUSION**

This scientometric analysis provides a comprehensive overview of the global research landscape for electric vehicle charging infrastructure from 1994 to 2024. The findings demonstrate that the field has arown exponentially, evolving into а highly interdisciplinary domain that integrates engineering, energy systems, transportation planning, and policy studies (Staffell et al., 2019). The analysis identified the United States, India, Germany, and China as the leading countries in terms of research productivity and collaboration. The most influential research has focused on foundational topics such as charging topologies, grid integration, and the socio-economic drivers of EV adoption. Keyword analysis revealed four major thematic clusters: charging technology, grid integration, optimization and planning, and policy. These themes reflect the core challenges and opportunities in deploying a widespread and effective EV charging network.

This review highlights a clear shift from purely technical studies towards more integrated research that considers the interplay between technology, the power grid, user behavior, and policy frameworks. Future research is likely to focus increasingly on smart charging, V2G applications, the integration of renewable energy sources with charging infrastructure, and the development of sustainable business models (S. Kumar et al., 2021). By mapping the intellectual structure of the field, this study provides a valuable reference for researchers to identify knowledge gaps and for policymakers to align strategies with the latest scientific insights, ultimately supporting the global transition to sustainable transportation.

### **REFERENCES**

Aghaei Chadegani, A., Salehi, H., Md Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of science and scopus databases. *Asian* 

Social Science, 9(5), 18–26. https://doi.org/10.5539/ass.v9n5p18 Ahmad, A., Alam, M. S., & Chabaan, R. (2017). A

Ahmad, A., Alam, M. S., & Chabaan, R. (2017). A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. IEEE Transactions on Transportation Electrification, 4(1), 38– 63. https://doi.org/10.1109/TTE.2017.2771

Ahmad, T., Zhang, H., & Yan, B. (2020). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. *Sustainable Cities and Society*, *55*. https://doi.org/10.1016/j.scs.2020.1020

619

52

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. *Journal of Informetrics*, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.00 7

Bendigiri, P., & Rao, P. (2023). Energy system models: a review of concepts and recent advances using bibliometrics. *International Journal of Sustainable Energy*, 42(1), 975–1007. https://doi.org/10.1080/14786451.2023. 2246082

Dadhwal, R., Kumar, R., Chohan, J. S., & Kaur, J. (2021). Scientometric analysis on applications and recent research trends in electric vehicles for energy saving. In T. S.K., K. S., B. P.B., & S. S.K. (Eds.), E3S Web of Conferences (Vol. 309). EDP Sciences. https://doi.org/10.1051/e3sconf/202130 901161

Darko, A., Chan, A. P. C., Adabre, M. A.,
Edwards, D. J., Hosseini, M. R.,
Ameyaw, E. E., Estate, R., Hong, T.,
Polytechnic, K., & Kong, H. (2020).
Automation in Construction Artificial
intelligence in the AEC industry:
Scientometric analysis and
visualization of research activities.
Automation in Construction, 112(May





- 2019), 103081. https://doi.org/10.1016/j.autcon.2020.1 03081
- Das, H. S., Rahman, M. M., Li, S., & Tan, C. W. (2020). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120. https://doi.org/10.1016/j.rser.2019.1096 18
- Eck, N. J. van, & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. *Journal of the American Society for Information Science and Technology*, 60(8), 1635–1651. https://doi.org/10.1002/asi.21075
- Eck, N. J. Van, & Waltman, L. (2014). Measuring Scholarly Impact. In Measuring Scholarly Impact. https://doi.org/10.1007/978-3-319-10377-8
- Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? *Applied Energy*, 225, 965–974. https://doi.org/10.1016/j.apenergy.2018.05.076
- Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69(October 2016), 596–609. https://doi.org/10.1016/j.rser.2016.11.1
- Kumar, R. R., & Alok, K. (2020). Adoption of electric vehicle: A literature review and prospects for sustainability. *Journal of Cleaner Production*, 253. https://doi.org/10.1016/j.jclepro.2019.1 19911
- Kumar, S., Navin, S., & Munish, K. (2021).
  Scientometric analysis of literature on distributed vehicular networks:
  VOSViewer visualization techniques. In

- Artificial Intelligence Review (Issue 0123456789). Springer Netherlands. https://doi.org/10.1007/s10462-021-09980-4
- Martinez, S., Delgado, M., Martinez, R., & Alvarez, S. (2019). Science mapping on the Environmental Footprint: A scientometric analysis- based review. *Ecological Indicators*, 106(June), 105543. https://doi.org/10.1016/j.ecolind.2019.105543
- Ozturk, I. (2010). A literature survey on energy-growth nexus. *Energy Policy*, *38*(1), 340–349. https://doi.org/10.1016/j.enpol.2009.09.024
- Pohekar, S. D., & Ramachandran, M. (2004).

  Application of multi-criteria decision making to sustainable energy planning

   A review. Renewable and Sustainable Energy Reviews, 8(4), 365–381.

  https://doi.org/10.1016/j.rser.2003.12.0
- San-Juan-Heras, R., Gabriel, J. L., Delgado, M. M., Alvarez, S., & Martinez, S. (2024). Scientometric analysis of cover crop management: Trends, networks, and future directions. *European Journal of Agronomy*, 161(September). https://doi.org/10.1016/j.eja.2024.1273 55
- Shashwat, S., Vishal, K., & Zingre, K. (2023).

  INVESTIGATING THE ROLE OF
  DIGITAL TWIN AND 5G
  TECHNOLOGY IN ENHANCING
  SMART ENERGY MANAGEMENT. In
  T. A., N. C., & N. C. (Eds.),
  Proceedings of the 39th Annual
  ARCOM Conference: Constructing for
  the Future, ARCOM 2023 (pp. 790–
  799). Association of Researchers in
  Construction Management.
  https://www.scopus.com/inward/record.
  uri?eid=2-s2.085204768553&partnerID=40&md5=e25
  defdefbc19b03903f3631c1e00ef8





- Sierzchula, W., Bakker, S., Maat, K., & Van Wee, B. (2014). The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy, 68, 183–194. https://doi.org/10.1016/j.enpol.2014.01. 043
- Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. *Scientometrics*, 126(6), 5113–5142. https://doi.org/10.1007/s11192-021-03948-5
- Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N., & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. *Energy and Environmental Science*, *12*(2), 463–491.
- https://doi.org/10.1039/c8ee01157e
  Su, W., Eichi, H., Zeng, W., & Chow, M. Y.
  (2012). A survey on the electrification
  of transportation in a smart grid
  environment. *IEEE Transactions on Industrial Informatics*, 8(1), 1–10.
  https://doi.org/10.1109/TII.2011.217245
- Tomić, J., & Kempton, W. (2007). Using fleets of electric-drive vehicles for grid support. *Journal of Power Sources*, 168(2), 459–468. https://doi.org/10.1016/j.jpowsour.2007. 03.010
- Tu, H., Feng, H., Srdic, S., & Lukic, S. (2019).

  Extreme Fast Charging of Electric

  Vehicles: A Technology Overview.

  IEEE Transactions on Transportation

  Electrification, 5(4), 861–878.

  https://doi.org/10.1109/TTE.2019.2958
  709
- van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping.

- Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
- Van Eck, N. J., Waltman, L., Dekker, R., & Van Den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416. https://doi.org/10.1002/asi.21421
- Weckowska, D., Weiss, D., Schwäbe, C., & Dreher, C. (2025). Technological innovation system analyses and sustainability Transitions: A literature review. *Environmental Innovation and Societal Transitions*, 54(September 2023). https://doi.org/10.1016/j.eist.2024.1009 35
- Yilmaz, M., & Krein, P. T. (2013a). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. *IEEE Transactions on Power Electronics*, 28(5), 2151–2169. https://doi.org/10.1109/TPEL.2012.221 2917
- Yilmaz, M., & Krein, P. T. (2013b). Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces. *IEEE Transactions on Power Electronics*, 28(12), 5673–5689. https://doi.org/10.1109/TPEL.2012.222 7500
- Zhang, W., Li, B., Xue, R., Wang, C., & Cao, W. (2021). A systematic bibliometric review of clean energy transition: Implications for low-carbon development. *PLoS ONE*, *16*(12 December), 1–18. https://doi.org/10.1371/journal.pone.02 61091.