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ABSTRACT

Traditional data aggregation methods often result in excessive energy I/\mc'g',js'g;o

consumption, increased aggregation time, and inefficient node  Received: March, 2025
selection, limiting their applicability in large-scale UWSNs. The Received in revised form: June, 2025
existing approach suffers from redundancy in data aggregation, —Accepted:July, 2025
suboptimal selection of master and local centres, and unbalanced Published onfine: September, 2025
energy utilization, leading to reduced network lifetime. To address KEywORDS

these challenges, this work introduced an improved data aggregation  Data Aggregation, Fuzzy Logic, Leaflet
scheme based on a palm tree-inspired hierarchical architecture, ~Andle, Master Node, Paim Tree
incorporating fuzzy logic for dynamic node selection. The OPT-FIS Architecture

utilized a multi-criteria fuzzy logic-based decision-making system to

optimize the selection of local centres, considering parameters such

as leaflet angle, residual energy, distance to the master node, and

energy-to-distance ratio. Fuzzy inference rules, which evaluate the

inputs, were created to determine node suitability for local centre

selection. The performance of the developed OPT-FIS was evaluated

against the existing method using performance metrics of aggregation

energy, aggregation time, aggregation ratio, network lifetime, and

selection efficiency for master and local centres. The results of the

implementation across various communication ranges of 400m, 500m,

and 600m showed that the OPT-FIS improved energy efficiency,

achieving a reduction in aggregation energy by 8.70%, 10.81%, and

7.98%, as well as a reduction in aggregation time by 13.71%, 18.60%,

and 9.84%, respectively. The results showed that the OPT-FIS

provides a scalable, energy-efficient, and adaptive approach to data

aggregation in underwater wireless sensor networks.

INTRODUCTION

Wireless sensor networks (WSNs) play
a vital role in today's technology by allowing
continuous monitoring of environmental factors,
infrastructure conditions, and other key variables.
Their importance lies in applications that require
quick access to data for informed decisions.
These systems are made up of multiple compact
nodes, each fitted with sensors to collect
information (Kathiroli & Kanmani, 2024) . In the
late 20th century, interest in wireless sensor
networks grew significantly. At first, these
networks were only used on land. However, with

advancements in oceanic modem technology,
they were eventually adapted for underwater
applications (Kaveripakam & Chinthaginjala,
2023).

Underwater Wireless Sensor Networks
(UWSNSs) enable devices to operate underwater,
collecting, processing, and transmitting data for
monitoring and exploration at various depths.
These devices use sensors to gather information
from the aquatic environment and relay it to a
surface station, where the data is processed
based on specific application needs. UWSNs have
been developed for multiple purposes, including
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studying oceanic geological processes, detecting
underwater mines, forecasting climate changes,
assessing human impact on marine ecosystems,
locating oil reserves, preventing accidents,
tracking marine life, and securing water borders
against unauthorized intrusions (Zhang et al.,
2023).

The Sugeno approach provides a
structured way to derive fuzzy rules from a given
set of input-output data. Instead of using a fuzzy
set as the outcome, as in Mamdani rules, Sugeno
replaces the “then” part with a function of the input
variables. A Takagi-Sugeno rule typically appears
as: Ifxisinset Aandyis in set B, then z s f(xy),
where X, y, and z are linguistic variables, A and B
are fuzzy sets defined on their respective
domains, and f(x,y) is a mathematical function
(Cavallaro, 2015; Karimi et al, 2022). The
Sugeno-type FIS produces a precise (crisp) output
by taking a weighted average of the rule results,
whereas the Mamdani-type FIS obtains a crisp
value by defuzzifying a fuzzy result. The initial two
steps in the inference process (fuzzifying the
inputs and applying the fuzzy operator) remain the
same for both approaches. However, a key
difference lies in the nature of the Sugeno output
where its membership functions are either linear
or constant (Karimi et al., 2022).

The study of (Habib et al. (2018))
addressed the challenge of routing efficiency and
energy imbalance in wireless sensor networks
with mobile sinks by proposing a starfish routing
backbone inspired by biological radial structures.
The approach also reduced energy imbalance and
operational overhead while improving scalability
with increasing network size. However, their fixed
canal structures and reliance on static thresholds
limit adaptability under dynamic energy states.
Ismail et al. (2020) proposed an opportunistic
routing protocol that enhances reliability and
energy efficiency by incorporating three metrics:
Advancement Factor (ADVf), Reliability Index
(RELI), and Shortest Path Index (SPi).

It used exponential priority functions and
holding time calculations to reduce duplicate
packets, balance energy use, and avoid void
holes. However, its performance degraded in
sparse networks due to fewer forwarding options.

Song (2020) proposed a cost-efficient design for
3D UWSN by jointly optimizing the density of data
sinks and the redundancy in fountain code (FC)
based  transmissions,  while  supporting
communication QoS requirements. The work
introduced a queuing-based analytical model
(M/G/1) and formulated an optimization problem to
minimize total cost (installation and transmission)
subject to reliability and delay constraints.
However, the method requires precise modeling of
queueing behavior and assumes slotted-Aloha
MAC, which may not scale well in dynamic
environments due to its high collision probability
and inefficiency when node density or traffic load
increases.

Zhang et al. (2021) proposed a
reinforcement  learning-based  opportunistic
routing protocol (RLOR) for UWSNs. The RLOR
integrates Q-learning with dynamic timing and a
recovery mechanism to select optimal relay nodes
based on depth, energy, neighbor count, and
transmission probability. Simulation results with
50 to 600 nodes showed higher packet delivery
rate, better data integrity, lower energy, and
reduced average hops. However, RLOR depends
on predefined parameters (y, B) which may not
self-adjust in  changing  environments.
Krishnaswamy and Manvi (2022) introduced a
palm tree-inspired data aggregation and routing
scheme for underwater wireless sensor networks,
using static and mobile software agents to
organize nodes into hierarchical structures.

Master and local centres were selected
based on residual energy, distance, and angle
thresholds, enabling multi-level aggregation via
mobile agents. The aggregation time increased
linearly with node density and communication
range. However, the scheme used fixed
thresholds and lacked adaptive decision-making
for node selection, which can result in uneven
energy usage, poor scalability, and decreased
network lifetime when the environment or node
behavior changes dynamically.

Subramani et al. (2022) introduced a
two-stage protocol combining Cultural Emperor
Penguin Optimizer-based Clustering (CEPOC)
and Grasshopper Optimization Algorithm-based
Routing (GOA) for energy-efficient UWSNs. The
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CEPOC dynamically formed clusters and selected
cluster heads using a fitness function based on
node degree, location, and neighbor distances.
However, the method relies on computationally
intensive  metaheuristics and fixed input
parameters.

Ayyadurai et al. (2023) presented a
cluster-based routing algorithm that integrates
fuzzy C-Means (FCM) for node grouping and
Cuckoo Search Optimization (CSO) for optimal
cluster head selection. Nodes were organized into
clusters based on proximity, and the most suitable
transmission nodes were selected by CSO to
minimize delay and energy use. Their approach
also showed good packet delivery rate and
improved network lifetime. However, its reliance
on static cluster definitons and algorithmic
complexity limits real-time adaptability. In the work
of Sun et al. (2023) they presented a multi-
objective routing protocol (MOR) designed for
both delay-sensitive (DS) and delay-insensitive
(DIS) UWSNs. It introduced separate relay
selection algorithms tailored to delay using energy
consumption, queue length, and hop distance as
decision factors. The DS routing minimized delay
through congestion- and delay-aware link cost
functions, while DIS routing focused on link
reliability and energy balancing through expected
transmission counts. However, MOR relies on
predefined weight tuning and assumes accurate
queue-length and energy estimation.

In the work of Luo et al. (2024), they
proposed a cluster routing algorithm based on a
multi-objective differential chaotic shuffled frog
leaping algorithm (MDCSFLA) to optimize energy
usage, network lifetime, and Quality of Service
(QoS). The method integrated differential local
search and chaotic perturbation to avoid local
optima and improve convergence. It considered
factors like residual energy, energy balance,
transmission delay, packet loss, and distance to
the sink. However, the method relies on complex
parameter tuning and high computation overhead.
The reviewed literature reveals that although
various routing and clustering techniques have
been proposed to improve energy efficiency, data
aggregation, and network lifetime in UWSNS,
many still rely on complex metaheuristics,

predefined thresholds, or static decision rules that
limit adaptability in dynamic environments.

Several methods, including those based
on reinforcement learning, swarm intelligence, or
multi-objective optimization, achieved promising
results but often required high computational cost,
extensive parameter tuning, or centralized control.
This gap motivated us to creates an opportunity
for the OPT-FIS approach, which integrates a
fuzzy inference system to enable adaptive, real-
time selection of master and local centres using
node features of residual energy, distance, and
leaflet angle. Among the available fuzzy logic
models, the Sugeno-type fuzzy inference system
is selected for this study due to its computational
simplicity, real-time efficiency, and ability to
produce crisp numerical outputs that are well-
suited for algorithmic ranking of node suitability in
UWSNS.

This paper comprises five sections.
Section 2 provides a detailed overview of
underwater acoustic communication. Section 3
outlines the development of a dynamic palm tree
architecture for energy-efficient data aggregation
using a sugeno fuzzy inference system. Section 4
presents the outcomes and engages in a
discourse about the simulation results. Finally,
Section 5 wraps up the study by summarizing the
contributions of this research.

Underwater Acoustic Communication

Path loss plays a crucial role in
underwater acoustic communication, mainly
influenced by how far the signal travels and its
frequency (Ayyadurai et al., 2023). Absorption
loss occurs when acoustic energy turns into heat,
which means channel bandwidth should match the
intended transmission distance. As operating
frequency and the distance between transmitter
and receiver grows, so does absorption loss.
Power limits also affect how much bandwidth can
be used (Jouhari et al., 2019). Underwater
acoustic communication bandwidth spans from
frequencies below 1 kHz to over 100 kHz.
Meanwhile, typical operating frequencies fall
between 10 Hz and 1 MHz (Khan et al., 2018a).
Different underwater tasks require specific
bandwidths and ranges, depending on what needs
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to be accomplished. Data rates for acoustic
transmission vary from about 31 kb/s to 125 kb/s,
influenced by factors such as channel coding and
the quantity of sending and receiving units
(Hamilton et al., 2020; Haque et al., 2020).

Routing in Underwater Wireless Sensor
Networks

Routing involves determining a suitable
route to move information from a starting point to
its destination. A UWSN typically includes sensor
nodes situated beneath the water’s surface, along
with a base station generally positioned outside
this aquatic setting (Subramani et al., 2022).
Because the underwater domain is vast, it
becomes crucial to choose ideal placements for
each node and find efficient pathways to transfer
collected data to the base station. This need
underlines the importance of routing in UWSNs
(Haque et al., 2020). Data aggregation is a key
technique used to combine and collect valuable
information in order to conserve energy. In sensor
networks with many densely placed nodes, the
same data may be recorded multiple times,
creating unnecessary redundancy. By applying
data aggregation methods, this redundancy can
be removed (Shovon & Shin, 2022). Its primary
objective is to gather and integrate information in

an energy-efficient manner, ultimately increasing
the network’s operational lifespan (Bhajantri,
2018; Haruna et al, 2025).

Fuzzy inference system

A fuzzy inference system (FIS) applies
an expert's knowledge to shape the design of a
controller. It uses fuzzy control rules (often
expressed in IF-THEN format) to define how
inputs relate to outputs (Yadav, 2021) . Fuzzy
reasoning involves two key elements. First, there
are the labels and membership functions linked to
the system’s inputs and outputs; selecting these
with care is one of the most crucial parts of the
design. Second, there is the rule base, which
transforms fuzzy input values into fuzzy outputs
(Cavallaro, 2015).

A FIS typically includes three main
parts. The first is the fuzzification stage, which
takes a precise input and converts it into a
linguistic form using membership functions stored
in its knowledge base. The second element, the
inference engine, determines how well the input
matches the fuzzy sets for the output by following
established fuzzy rules. Lastly, the defuzzification
process turns the fuzzy conclusion back into a
specific, non-fuzzy value (Camastra et al., 2015;
Murnawan et al., 2021; Momoh et al., 2025).

Fuzzy rule
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Figure 2.1: An lllustration of the Fuzzy Inference Framework (Alakhras et al., 2020)

As shown in Figure 2.1, a fuzzy
inference system typically follows three steps: (i)
fuzzification, where fuzzy sets for the linguistic

variables are created, (ii) combining all relevant
fuzzy rules, and (iii) defuzzification, which
transforms the fuzzy result into a non-fuzzy value
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suitable for further use (Alakhras et al., 2020). At
the core of the FIS, the inference engine simulates
human decision-making through approximate
reasoning, guiding the system toward an effective
control strategy (Camastra et al., 2015). During

this inference process, fuzzy inputs activate the
relevant fuzzy rules, resulting in a corresponding
fuzzy output. Figure 2.2 provides a general
overview of the structure of such a fuzzy expert
system (Cavallaro, 2015).

Knowledge Base
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Figure 2.2: The Design of a Fuzzy Expert System (Cavallaro, 2015)

In a fuzzy inference model, often called
approximate reasoning, the thought process relies
on a series of if-then rules reflecting expert
understanding (Bhaskarwar & Pete, 2021). Each
conditional statement consists of an if-part (the
premise) and a then-part (the conclusion). Within
a fuzzy control system, knowledge is represented
as a collection of rules, such as “if Xis Athen Y is
B,” or more generally, “if X; is A; and ... and X,
is A, then Y is B”, where A, A,,, B are fuzzy sets.
The knowledge base as seen in Figure 2.2, which
includes general information about the problem
domain, links premises to conclusions (Cavallaro,
2015).

To demonstrate how the stages of a
fuzzy inference system work, we start by
converting the precise input values X; into fuzzy
sets X;, according to their respective input
spaces. Second, the input fuzzy sets
X1,%5, ..., %,) are compared with the
corresponding if-part fuzzy sets in each rule’s
antecedent. This comparison is represented as
(Alakhras et al., 2020):

@/ ZS(N’X‘) (0.1)

Here, Sis a function used to evaluate how well the
input fuzzy sets align with the antecedents defined
in each fuzzy rule. Common choices for the S
function include the max operator and other t-
conorms (Alakhras et al., 2020).

Third, the individual matching degrees a/
obtained from all n input fuzzy sets for a given rule
are combined using a T operator (Alakhras et al.,
2020):

yjo(alj,...,a,j) 02)

Typical T operators include the

minimum function, the product, or more general t-
norm connectives.
Fourth, the computed value u; activates the
corresponding rule’s output fuzzy set Y; (Alakhras
et al., 2020). In many fuzzy system models, Y; is
represented by its centroid, leading to:
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fj =f (’ui’Yi) (0.3)

Fifth, the results from all activated rules,
fjJ =1,2,..,m, are combined into one final
output fuzzy set (Alakhras et al., 2020) as:

y:g(fl’ fzs""fm) (04)

In practice, a Mamdani-type fuzzy
inference system commonly applies the centre-of-
gravity method for defuzzification, while a Takagi-
Sugeno approach often uses a weighted average
based on membership values (Alakhras et al.,
2020; Karimi et al., 2022).

Palm tree network architecture

The palm-tree-inspired architecture is
designed to manage both data aggregation and
routing in underwater sensor networks. In this
approach, the sink node triggers the process by
sending a request to collect data, which is then
aggregated as it flows upward through the network
hierarchy, enhancing scalability (Krishnaswamy &
Manvi, 2022). At the top, the crown symbolizes the
palm canopy. Within this canopy, spines branch
out, each bearing leaflets connected at a junction
by petioles. Each leaflet attaches to the leaf via a
rachis and collectively covers every node in the
Underwater Wireless Acoustic Sensor Network
(UWASN). Where petioles meet the spines, a
master centre node is assigned per spine. A local
centre node represents the rachis link to the spine
(Krishnaswamy & Manvi, 2022).

Palm tree structure
Below are key terms related to the palm
tree architecture (Krishnaswamy & Manvi, 2022):
1. Palm tree structure: This represents the
network’s  overall form, including
leaflets/fronds and a sink node, with
numerous intermediate nodes in

between.

2. Master centre node: This is an
intermediate node located where petioles
meet. It gathers aggregated data from

leaflets connected through local-level
aggregation.

3. Local centre node: Another intermediate
node placed along the rachis of a leaflet.
Local aggregation is performed here to
eliminate redundant information collected
from nearby underwater sensor nodes.

4. Number of neighboring UW-sensor
nodes: The total count of active
underwater sensor nodes within a certain
communication range.

5. Residual Energy: This defines the energy
remaining in the node's battery. The
choices reflect typical WSN energy
profiles and support intelligent decision-
making for energy conservation.

6. Distance to Master Node: This is the
distance between a sensor node and its
associated master node, bounded within
the communication range R. The range is
expressed as d,,, € [0, R], where R is
the communication range.

7. Petiole angle: The angle describing
where the master centre node is located,
measured from a reference direction
extending from the sink to nearby
underwater sensor nodes.

8. Leaflet angle: The angle formed between
the leaflets along the rachis and the local
centre on the spine, referenced against
the main (midrib) axis.

9. Energy-to-distance ratio: is a critical
feature for assessing the suitability of a
node for data aggregation and relay
operations. It combines two essential
factors which are residual energy (Er) and
distance to the master node (dm). The
ratio is calculated as:

E

r

d,+o

e—d
(2.5)

In equation Error! Reference source not found.
, € is a small positive constant to avoid division by
zero.
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Figure 2.3: Environment of a Palm Tree-Structured Network (Krishnaswamy & Manvi, 2022)

centre, then gathers this aggregated information
and forwards it to the appropriate master centre.
In a similar way, the master aggregation agent
(MAA), activated by the last master centre,
combines the data from all master centres and
delivers it to the sink (Krishnaswamy & Manvi,
2022). Table 2.1 lists the notations used to

describe the system.

The data aggregation framework,
shown in Figure 2.3, illustrates the positions of the
sink, local centres, and master centres arranged
along the leaflets and at the junctions of the
petioles in a palm tree structure. Each local centre
collects and consolidates data from its
neighboring underwater sensor nodes. A local
aggregation agent (LAA), started by the final local

Table 2. 1: Notations (Krishnaswamy & Manvi, 2022)
Descriptions Symbols
Communication range of UW-sensor node R
Neighbour node count N,
Weight factor of Master(m)/Local (I) centre selection W /W,
Arbitrary radius of junction of petioles r
Ny

Number of petioles

Corresponding author: Joel Haruna
4 joelharuna022@gmail.com
Department of Computer Engineering, Confluence University of Science and Technology, Osara, Kogi State - Nigeria.

© 2025. Faculty of Technology Education. ATBU Bauchi. Al rights reserved
651


http://www.atbuftejoste.net/
mailto:joelharuna022@gmail.com

JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025
E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Jounal homepage: www.atbuftejoste.com.ng

Descriptions Symbols
Initial energy of every node E;
Residual/Utilized energy of every node Eg,/Ey
Euclidean distance between nodes | and m Eq, .,
Threshold distance of master/local centre Dyen/Din
Angle between master centre/petiole and node i Op,

Total number of leaflets connected to the spine Lay
Degree of neighbor nodes Doen
Distance between petioles P,
Petiole angle 0,

Angle between petioles Bpetiole
Probability of occurrence of redundant data Prua
Redundant data set Rya
Angle between local centre/leaflet and node i 0y,
Probability of aggregated data Py

Data aggregation time at master/local centres Maggtime/LAagtime
Time required to aggregate from leaflet Tiear
Total time for aggregation Toggtime

Selection procedure for petiole/master centres

Petioles emerge from their junction
located at the upper part of the palm’s trunk. The
distance between petioles, denoted as P,
(Krishnaswamy & Manvi, 2022), can be calculated
by:

P, =2xRx D, 05)

The number of petioles in the crown’s
junction area, N, (Krishnaswamy & Manvi, 2022),
is determined by:

N = 2rr
=)
d 2.7)

The junction’s radius r in equation (2.8)
(Krishnaswamy & Manvi, 2022) is found using:

r=RxD, 28)

The value of D, in equation (2.8)
(Krishnaswamy & Manvi, 2022) is chosen based
on the desired number of direct and indirect
neighbors for data aggregation. The petiole angle,
Opetiole D» IS given as:

360°
gpetiole = N_
p (29)
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In equation (2.9) (Krishnaswamy &
Manvi, 2022), the angle sets the spacing between
petioles. The angle of a specific petiole p, denoted
0, forp = 1,2,..., N, is computed as:
(9 = epetiole e p

P (2.10)

The petiole angle between neighboring
underwater sensor nodes at the junction
(considering node | and node m) is computed as:
o, —tan” (Y = Ym)

0] (X| -X, )
(2.11)

where (x;,v;) and (x,,,y,) represent the
coordinates of node | and node m in equation
(2.11), respectively (Krishnaswamy & Manvi,
2022).

Master centre selection depends on
which quadrant of the circle the petiole lies in. The
junction of the petioles is considered as a circle,
so the following four cases arise (Krishnaswamy &
Manvi, 2022):

1. Case I: If x;>x, and y; >y,
master centre selection occurs in the
first quadrant.

2. Case II: If x; <x, and y; > vy,
master centre selection occurs in the
second quadrant.

3. Case lll: If x; <x, and y; <y,
master centre selection occurs in the
third quadrant.

4. Case V. If x; >x,, and y; < Yy,
master centre selection occurs in the
fourth quadrant.

The remaining (residual) energy, Eg,
(Krishnaswamy & Manvi, 2022), available at each
underwater sensor node can be found using:

Es =[5~ (2412)

where E; is the node’s initial energy and E,, is the
amount of energy it has already utilized in
equation (2.12) (Krishnaswamy & Manvi, 2022).
The Euclidean distance between any underwater
sensor node | and a neighboring node m is
determined by:

EdLm = \/|X| - Xm|2 +|y| - ym|2 2.43)

In equation (2.13) (Krishnaswamy &
Manvi, 2022), the weight factor W for a given
underwater sensor node depends on the number
of nearby nodes N, and the node’s residual
energy at time tEg, . The sink node’s UWSMA
starts the master selection procedure by sending
a query to its neighboring nodes. In response,
each neighbor's UWNMA calculates its own W;
and returns both its position and W to the sink
node’s agent. The weight factor is computed as:
W, =K (Eg xN,) o1

where K is a constant value between 0 and 1 in
equation (2.14).

During master centre selection at the
petiole junction, underwater sensor nodes
positioned at angle 6, are considered. Each
node’s threshold distance is represented as D,
M Eq(,m) > Dpen, the underwater sensor node
is eligible to compete for the master centre role.
Among the competing neighbors, the node with
the highest IW; is chosen by the UWSMA as the
master centre (Petiole Aggregator - PA)
(Krishnaswamy & Manvi, 2022).

If no suitable contender meets the
threshold  (Eqyim) > Dpen), then Dy s
adjusted (either increased or decreased) to find
other candidates for PA selection. Once the first
PA is selected at a given petiole angle, the
UWSMA of that master centre triggers PASA. The
PASA continues identifying subsequent PAs until
it reaches the final master centre in the network.
Throughout this process, PASA carries the IDs of
each master centre to form a path linking all of
them together (Krishnaswamy & Manvi, 2022).

Designing an optimized palm tree fuzzy
inference system (OPT-FIS)

This subsection details the development
of the OPT-FIS, which leverages fuzzy logic for
efficient selection of local and master centres,
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optimizing energy use and data aggregation in

UWSNS.

Fuzzy logic system initialization

To select suitable local centre nodes

dynamically, a FIS is designed and implemented.
The system takes four inputs: leaflet angle (6;,,),

residual energy (E,), distance to master node
(d,,,), and energy-to-distance ratio (R,_,). Each
input was assigned three gaussian membership
functions (MFs): Low, Medium, and High. These
are presented in Table 3.2.

Table 3. 1: Membership Function Parameters for OPT-FIS Input Variables

Input Variable Fuzzy Type Support Centre  Description
Set Range | Peak
Leaflet Angle (6 € [0, Low Gaussian Full support 60° Nodes aligned at narrow
360]) angles
Medium  Gaussian Full support 100° Moderately aligned
nodes
High Gaussian Full support 270° Nodes at wide angles
Residual Energy (E€  Low Gaussian Full support 2 Nodes with low battery
[0, 10)) levels
Medium  Gaussian Full support 6 Nodes with medium
energy
High Gaussian Full support 9 Nodes with sufficient
energy
Distance to Master Near Gaussian Full  support "R Nodes close to master
Node (dn, € [0, R]) (scaled by R)
Medium  Gaussian Full  support %2R Nodes at moderate
(scaled by R) distance
Far Gaussian Full  support %R Nodes far from master
(scaled by R)
Energy-to-Distance Low Trapezoidal [0, 0.5] Peak at Unfavorable (low energy
Ratio (Re-d) 0to 0.3 or far distance)
Medium  Triangular ~ [0.3, 0.7] Peak at Moderately suitable
05 nodes
High Trapezoidal [0.5, 1] Peak at Favorable (high energy
1 and short distance)

1. Leaflet Angle (6;,,) : The centres (60, represents nodes with moderate angles,
100, and 270 degrees) for low, medium, typically aligned in general network
and high, respectively. The MFs are coverage scenarios, balancing
chosen based on network geometry and redundancy and efficiency. The 270
data distribution. The 60 degree degree represents nodes at wide angles
represents nodes aligned in narrow in high-redundancy regions.
angles, found in clustered topologies, 2. Residual Energy (E,.) : The parameters

where nodes share minimal overlapping
communication areas. The 100 degree

(2, 6, 9) and spreads (42, 2.82, 102) are
chosen to reflect low, medium, and high

Corresponding author: Joel Haruna
4 joelharuna022@gmail.com

Department of Computer Engineering, Confluence University of Science and Technology, Osara, Kogi State - Nigeria.
© 2025. Faculty of Technology Education. ATBU Bauchi. Al rights reserved

654


http://www.atbuftejoste.net/
mailto:joelharuna022@gmail.com

A=/

JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025

N <y
E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng

energy distribution of the network,
ensuring efficient resource allocation
and prolonged network operation.

3. Distance to Master Node (d,,,) : The
centres of the membership functions are
scaled relative to the communication
range (R) of the sensor node to reflect
spatial distribution.

Energy-to-Distance Ratio (R._,) : Re-
d is computed using equation (2.5), where € =
0.001. ¢ is used to prevent division by zero. It is
chosen to be small enough not to affect valid
distance measurements, while ensuring numerical
stability when nodes are extremely close to the
master node.

Nodes with unfavorable energy-to-distance ratios.

1 if R, <03
MFLuw (Re—d ) = 00557_297:; if 0.3< Refd <05
0 ifR,>05 )

Nodes with moderately favorable ratios

Ria=03 4 03 R, <05
0.5-0.3
0.7-R .
MFeqium (Refn ) = 07- Oe; if 05< R, <0.7
0 otherwise
(0.6)
Nodes with favorable ratios
0 ifR, , <05
R_,-05 .
MFHigh(Refd): ]_iT |f 05< Refd Sl
1 if R, >1 (33)

The ratio balances energy consumption
and communication efficiency. Higher Re-4 implies
nodes are both energy-efficient and close to the
master node, making them suitable for
aggregation. Lower Re-d reflects poor energy or
large distances, discouraging their selection.

RESULT AND DISCUSSION

This section presents the results of the
OPT-FIS performance evaluation. The analysis
focuses on aggregation energy, aggregation time,
aggregation ratio, and network lifetime as it
performance metrics. These metrics provide
insights into the effectiveness of the OPT-FIS in
enhancing data aggregation and energy efficiency
in UWSNSs.

Aggregation energy

The performance of the OPT-FIS is
evaluated based on energy consumption during
data aggregation. The results are analyzed and
compared in Figures 4.1 across three different
communication ranges of 400 m, 500 m, and 600
m.
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Figure 4.1. Aggregation Energy Against the
Number of Nodes Across (a) 400 (b) 500 and (c)
600 Meters Communication Range

Figure 4.1a shows the variation in
aggregation energy with respect to the number of
nodes for a 400m communication range. The
OPT-FIS demonstrates lower aggregation energy
consumption compared to the baseline method
(PS). This is due to the efficient selection of master
and local centres, minimizing redundant data
aggregation. The energy savings becomes more
obvious as the number of nodes increases beyond
100. The reduced energy consumption reflects the
effectiveness of the OPT-FIS structure in
optimizing data aggregation.

In  Figure 4.1b, for a 500m
communication range, the results indicate a
similar trend. The aggregation energy for the OPT-
FIS remains lower than the PS, even as the
number of nodes increases. As the
communication range increases, the OPT-FIS
effectively manages node connectivity and
reduces energy use.

Figure 4.1c illustrates the results for a
600m communication range. The extended
communication range introduces more connected
nodes, resulting in higher aggregation energy.
Compared to the results of the PS method, the
OPT-FIS  consistently demonstrates  better
performance across all communication ranges.
While the PS exhibits a linear increase in energy
consumption with the number of nodes, the OPT-
FIS method maintains a controlled rise. This
improvement can be attributed to the local centre

selection strategy, which optimize the aggregation
process by reducing unnecessary data
transmissions and processing.

Aggregation time

The same communication ranges of
400, 500, and 600 meters were used to assess the
aggregation time results, as shown in Figure 4.2.
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Figure 4.2: Aggregation Time Against the Number
of Nodes Across (a) 400 (b) 500 and (c) 600
Meters Communication Range
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As seen in Figure 4.2a, the OPT-FIS
consistently shows lower aggregation time
compared to the PS for a 400m communication
range. The time difference becomes more
significant as the number of nodes increases.
Figure 4.2b reveals a similar trend for the 500m
communication range. The OPT-FIS maintains
lower aggregation times across all node densities,
with a notable gap emerging as the network grows
deeper. For the 600m communication range, as
illustrated in Figure 4.2c, the OPT-FIS continues
to outperform the PS in terms of aggregation time,
with the difference becoming more pronounced
beyond 100 nodes. This consistent improvement
reflects the system’s stabilization over time, where
the benefits of distributed aggregation and
efficient routing compensate for the minor delays
seen during initial setup.

While the PS shows slightly better
performance in energy and time for smaller
networks (40 to 80 nodes), the OPT-FIS
demonstrates advantages in larger and more
complex n setworks, validating its scalability and
overall efficiency. Lower aggregation time often
corresponds to reduced energy consumption, as
faster aggregation minimizes the duration of data
transmission and processing.

Aggregation ratio

The results for aggregation ratio are
analyzed in Figures 4.3 across communication
ranges of 400m, 500m, and 600m.
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Figure 4.3: Aggregation Time Against the Number
of Nodes Across (a) 400 (b) 500 and (c) 600
Meters Communication Range

In Figure 4.3a, the OPT-FIS achieves a
higher aggregation ratio than the PS for the 400m
range. As the number of nodes increases, the gap
in performance broadens, with the OPT-FIS
reaching a higher aggregation ratio at 200 nodes.
Figure 4.3b illustrates the aggregation ratio for the
500m communication range. Similar to the 400m
range, the OPT-FIS outperforms the PS as the
network becomes deeper. For the 600m range
shown in Figure 4.3c, the OPT-FIS continues to
demonstrate a better aggregation ratio than the
PS. As the number of nodes increases, the
advantage of the OPT-FIS becomes more
apparent. The superior aggregation ratio of the
OPT-FIS across all communication ranges
highlights its ability to aggregate data more
effectively than the PS. This improvement aligns
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with the reduced aggregation time and energy
seen in previous results, as efficient aggregation
processes reduce redundancy and increase the
proportion of useful aggregated data.

Network lifetime

The network lifetime findings were
assessed using the same communication ranges
0f 400, 500 and 600 meters, as illustrated in Figure
44,
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Figure 4. 4: Network Lifetime Against the Number
of Nodes Across (a) 400 (b) 500 and (c) 600
Meters Communication Range

In Figure 4.4a, the network lifetime for
both the OPT-FIS and PS increases with the
number of nodes. However, the OPT-FIS
consistently achieves a longer network lifetime
compared to the PS, particularly as the number of
nodes expands. As shown in Figure 4.4b for the
500m communication range, the OPT-FIS
maintains its advantage over the PS in terms of
network lifetime. The gap becomes more
significant as the network grows denser. In Figure
44c, the OPT-FIS demonstrates the highest
improvement in network lifetime for the 600m
communication range. Although the PS method
also improves as the number of nodes increases,
it shows a lower overall network lifetime due to
less effective energy management. On the other
hand, the OPT-FIS achieves better energy
efficiency through its adaptive node selection
using a fuzzy inference system, which considers
residual energy, distance, and node positioning.
By dynamically selecting local centres based on
current  network  conditions, it reduces
unnecessary transmissions and balances the
energy load across nodes.

CONCLUSION

The results obtained confirm that the
optimized palm tree fuzzy inference system (OPT-
FIS) improves energy efficiency and data
aggregation in UWSNs compared to the PS
method. In aggregation, OPT-FIS demonstrated
improvements of 8.70%, 10.81%, and 7.98% for
the ranges 400m, 500m, and 600m, respectively.
These improvements are due to the hierarchical
structure and dynamic selection of master and
local centres, which reduce redundant data
processing and enhance aggregation efficiency.
To sum it up, these results validate that OPT-FIS
provides a more scalable and energy-efficient
approach to data aggregation in UWSNSs.
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