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ABSTRACT 
Traditional data aggregation methods often result in excessive energy 
consumption, increased aggregation time, and inefficient node 
selection, limiting their applicability in large-scale UWSNs. The 
existing approach suffers from redundancy in data aggregation, 
suboptimal selection of master and local centres, and unbalanced 
energy utilization, leading to reduced network lifetime. To address 
these challenges, this work introduced an improved data aggregation 
scheme based on a palm tree-inspired hierarchical architecture, 
incorporating fuzzy logic for dynamic node selection. The OPT-FIS 
utilized a multi-criteria fuzzy logic-based decision-making system to 
optimize the selection of local centres, considering parameters such 
as leaflet angle, residual energy, distance to the master node, and 
energy-to-distance ratio. Fuzzy inference rules, which evaluate the 
inputs, were created to determine node suitability for local centre 
selection. The performance of the developed OPT-FIS was evaluated 
against the existing method using performance metrics of aggregation 
energy, aggregation time, aggregation ratio, network lifetime, and 
selection efficiency for master and local centres. The results of the 
implementation across various communication ranges of 400m, 500m, 
and 600m showed that the OPT-FIS improved energy efficiency, 
achieving a reduction in aggregation energy by 8.70%, 10.81%, and 
7.98%, as well as a reduction in aggregation time by 13.71%, 18.60%, 
and 9.84%, respectively. The results showed that the OPT-FIS 
provides a scalable, energy-efficient, and adaptive approach to data 
aggregation in underwater wireless sensor networks. 

 
INTRODUCTION 
  Wireless sensor networks (WSNs) play 
a vital role in today's technology by allowing 
continuous monitoring of environmental factors, 
infrastructure conditions, and other key variables. 
Their importance lies in applications that require 
quick access to data for informed decisions. 
These systems are made up of multiple compact 
nodes, each fitted with sensors to collect 
information (Kathiroli & Kanmani, 2024) . In the 
late 20th century, interest in wireless sensor 
networks grew significantly. At first, these 
networks were only used on land. However, with 

advancements in oceanic modem technology, 
they were eventually adapted for underwater 
applications (Kaveripakam & Chinthaginjala, 
2023). 
  Underwater Wireless Sensor Networks 
(UWSNs) enable devices to operate underwater, 
collecting, processing, and transmitting data for 
monitoring and exploration at various depths. 
These devices use sensors to gather information 
from the aquatic environment and relay it to a 
surface station, where the data is processed 
based on specific application needs. UWSNs have 
been developed for multiple purposes, including 
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studying oceanic geological processes, detecting 
underwater mines, forecasting climate changes, 
assessing human impact on marine ecosystems, 
locating oil reserves, preventing accidents, 
tracking marine life, and securing water borders 
against unauthorized intrusions (Zhang et al., 
2023). 
  The Sugeno approach provides a 
structured way to derive fuzzy rules from a given 
set of input-output data. Instead of using a fuzzy 
set as the outcome, as in Mamdani rules, Sugeno 
replaces the “then” part with a function of the input 
variables. A Takagi-Sugeno rule typically appears 
as: If x is in set A and y is in set B, then z is f(x,y), 
where x, y, and z are linguistic variables, A and B 
are fuzzy sets defined on their respective 
domains, and f(x,y) is a mathematical function 
(Cavallaro, 2015; Karimi et al., 2022). The 
Sugeno-type FIS produces a precise (crisp) output 
by taking a weighted average of the rule results, 
whereas the Mamdani-type FIS obtains a crisp 
value by defuzzifying a fuzzy result. The initial two 
steps in the inference process (fuzzifying the 
inputs and applying the fuzzy operator) remain the 
same for both approaches. However, a key 
difference lies in the nature of the Sugeno output 
where its membership functions are either linear 
or constant (Karimi et al., 2022). 
  The study of (Habib et al. (2018)) 
addressed the challenge of routing efficiency and 
energy imbalance in wireless sensor networks 
with mobile sinks by proposing a starfish routing 
backbone inspired by biological radial structures. 
The approach also reduced energy imbalance and 
operational overhead while improving scalability 
with increasing network size. However, their fixed 
canal structures and reliance on static thresholds 
limit adaptability under dynamic energy states.  
Ismail et al. (2020) proposed an opportunistic 
routing protocol that enhances reliability and 
energy efficiency by incorporating three metrics: 
Advancement Factor (ADVf), Reliability Index 
(RELi), and Shortest Path Index (SPi).  
  It used exponential priority functions and 
holding time calculations to reduce duplicate 
packets, balance energy use, and avoid void 
holes. However, its performance degraded in 
sparse networks due to fewer forwarding options. 

Song (2020) proposed a cost-efficient design for 
3D UWSN by jointly optimizing the density of data 
sinks and the redundancy in fountain code (FC) 
based transmissions, while supporting 
communication QoS requirements. The work 
introduced a queuing-based analytical model 
(M/G/1) and formulated an optimization problem to 
minimize total cost (installation and transmission) 
subject to reliability and delay constraints. 
However, the method requires precise modeling of 
queueing behavior and assumes slotted-Aloha 
MAC, which may not scale well in dynamic 
environments due to its high collision probability 
and inefficiency when node density or traffic load 
increases.  
  Zhang et al. (2021) proposed a 
reinforcement learning-based opportunistic 
routing protocol (RLOR) for UWSNs. The RLOR 
integrates Q-learning with dynamic timing and a 
recovery mechanism to select optimal relay nodes 
based on depth, energy, neighbor count, and 
transmission probability. Simulation results with 
50 to 600 nodes showed higher packet delivery 
rate, better data integrity, lower energy, and 
reduced average hops. However, RLOR depends 
on predefined parameters (γ, β) which may not 
self-adjust in changing environments. 
Krishnaswamy and Manvi (2022) introduced a 
palm tree-inspired data aggregation and routing 
scheme for underwater wireless sensor networks, 
using static and mobile software agents to 
organize nodes into hierarchical structures.  
  Master and local centres were selected 
based on residual energy, distance, and angle 
thresholds, enabling multi-level aggregation via 
mobile agents. The aggregation time increased 
linearly with node density and communication 
range. However, the scheme used fixed 
thresholds and lacked adaptive decision-making 
for node selection, which can result in uneven 
energy usage, poor scalability, and decreased 
network lifetime when the environment or node 
behavior changes dynamically.  
  Subramani et al. (2022) introduced a 
two-stage protocol combining Cultural Emperor 
Penguin Optimizer-based Clustering (CEPOC) 
and Grasshopper Optimization Algorithm-based 
Routing (GOA) for energy-efficient UWSNs. The 
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CEPOC dynamically formed clusters and selected 
cluster heads using a fitness function based on 
node degree, location, and neighbor distances. 
However, the method relies on computationally 
intensive metaheuristics and fixed input 
parameters. 
  Ayyadurai et al. (2023) presented a 
cluster-based routing algorithm that integrates 
fuzzy C-Means (FCM) for node grouping and 
Cuckoo Search Optimization (CSO) for optimal 
cluster head selection. Nodes were organized into 
clusters based on proximity, and the most suitable 
transmission nodes were selected by CSO to 
minimize delay and energy use. Their approach 
also showed good packet delivery rate and 
improved network lifetime. However, its reliance 
on static cluster definitions and algorithmic 
complexity limits real-time adaptability. In the work 
of Sun et al. (2023) they presented a multi-
objective routing protocol (MOR) designed for 
both delay-sensitive (DS) and delay-insensitive 
(DIS) UWSNs. It introduced separate relay 
selection algorithms tailored to delay using energy 
consumption, queue length, and hop distance as 
decision factors. The DS routing minimized delay 
through congestion- and delay-aware link cost 
functions, while DIS routing focused on link 
reliability and energy balancing through expected 
transmission counts. However, MOR relies on 
predefined weight tuning and assumes accurate 
queue-length and energy estimation.  
  In the work of  Luo et al. (2024), they  
proposed a cluster routing algorithm based on a 
multi-objective differential chaotic shuffled frog 
leaping algorithm (MDCSFLA) to optimize energy 
usage, network lifetime, and Quality of Service 
(QoS). The method integrated differential local 
search and chaotic perturbation to avoid local 
optima and improve convergence. It considered 
factors like residual energy, energy balance, 
transmission delay, packet loss, and distance to 
the sink. However, the method relies on complex 
parameter tuning and high computation overhead. 
The reviewed literature reveals that although 
various routing and clustering techniques have 
been proposed to improve energy efficiency, data 
aggregation, and network lifetime in UWSNs, 
many still rely on complex metaheuristics, 

predefined thresholds, or static decision rules that 
limit adaptability in dynamic environments.  
  Several methods, including those based 
on reinforcement learning, swarm intelligence, or 
multi-objective optimization, achieved promising 
results but often required high computational cost, 
extensive parameter tuning, or centralized control. 
This gap motivated us to creates an opportunity 
for the OPT-FIS approach, which integrates a 
fuzzy inference system to enable adaptive, real-
time selection of master and local centres using 
node features of residual energy, distance, and 
leaflet angle. Among the available fuzzy logic 
models, the Sugeno-type fuzzy inference system 
is selected for this study due to its computational 
simplicity, real-time efficiency, and ability to 
produce crisp numerical outputs that are well-
suited for algorithmic ranking of node suitability in 
UWSNs. 
  This paper comprises five sections. 
Section 2 provides a detailed overview of 
underwater acoustic communication. Section 3 
outlines the development of a dynamic palm tree 
architecture for energy-efficient data aggregation 
using a sugeno fuzzy inference system. Section 4 
presents the outcomes and engages in a 
discourse about the simulation results. Finally, 
Section 5 wraps up the study by summarizing the 
contributions of this research. 
 
Underwater Acoustic Communication 
  Path loss plays a crucial role in 
underwater acoustic communication, mainly 
influenced by how far the signal travels and its 
frequency (Ayyadurai et al., 2023). Absorption 
loss occurs when acoustic energy turns into heat, 
which means channel bandwidth should match the 
intended transmission distance. As operating 
frequency and the distance between transmitter 
and receiver grows, so does absorption loss. 
Power limits also affect how much bandwidth can 
be used (Jouhari et al., 2019). Underwater 
acoustic communication bandwidth spans from 
frequencies below 1 kHz to over 100 kHz. 
Meanwhile, typical operating frequencies fall 
between 10 Hz and 1 MHz (Khan et al., 2018a). 
Different underwater tasks require specific 
bandwidths and ranges, depending on what needs 
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to be accomplished. Data rates for acoustic 
transmission vary from about 31 kb/s to 125 kb/s, 
influenced by factors such as channel coding and 
the quantity of sending and receiving units 
(Hamilton et al., 2020; Haque et al., 2020). 
 
Routing in Underwater Wireless Sensor 
Networks 
  Routing involves determining a suitable 
route to move information from a starting point to 
its destination. A UWSN typically includes sensor 
nodes situated beneath the water’s surface, along 
with a base station generally positioned outside 
this aquatic setting (Subramani et al., 2022). 
Because the underwater domain is vast, it 
becomes crucial to choose ideal placements for 
each node and find efficient pathways to transfer 
collected data to the base station. This need 
underlines the importance of routing in UWSNs 
(Haque et al., 2020). Data aggregation is a key 
technique used to combine and collect valuable 
information in order to conserve energy. In sensor 
networks with many densely placed nodes, the 
same data may be recorded multiple times, 
creating unnecessary redundancy. By applying 
data aggregation methods, this redundancy can 
be removed (Shovon & Shin, 2022). Its primary 
objective is to gather and integrate information in 

an energy-efficient manner, ultimately increasing 
the network’s operational lifespan (Bhajantri, 
2018; Haruna et al, 2025). 
 
Fuzzy inference system 
  A fuzzy inference system (FIS) applies 
an expert’s knowledge to shape the design of a 
controller. It uses fuzzy control rules (often 
expressed in IF–THEN format) to define how 
inputs relate  to outputs (Yadav, 2021) . Fuzzy 
reasoning involves two key elements. First, there 
are the labels and membership functions linked to 
the system’s inputs and outputs; selecting these 
with care is one of the most crucial parts of the 
design. Second, there is the rule base, which 
transforms fuzzy input values into fuzzy outputs 
(Cavallaro, 2015). 
  A FIS typically includes three main 
parts. The first is the fuzzification stage, which 
takes a precise input and converts it into a 
linguistic form using membership functions stored 
in its knowledge base. The second element, the 
inference engine, determines how well the input 
matches the fuzzy sets for the output by following 
established fuzzy rules. Lastly, the defuzzification 
process turns the fuzzy conclusion back into a 
specific, non-fuzzy value (Camastra et al., 2015; 
Murnawan et al., 2021; Momoh et al., 2025). 

 
Figure 2.1: An Illustration of the Fuzzy Inference Framework (Alakhras et al., 2020) 
 
  As shown in Figure 2.1, a fuzzy 
inference system typically follows three steps: (i) 
fuzzification, where fuzzy sets for the linguistic 

variables are created, (ii) combining all relevant 
fuzzy rules, and (iii) defuzzification, which 
transforms the fuzzy result into a non-fuzzy value 
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suitable for further use (Alakhras et al., 2020). At 
the core of the FIS, the inference engine simulates 
human decision-making through approximate 
reasoning, guiding the system toward an effective 
control strategy (Camastra et al., 2015). During 

this inference process, fuzzy inputs activate the 
relevant fuzzy rules, resulting in a corresponding 
fuzzy output. Figure 2.2 provides a general 
overview of the structure of such a fuzzy expert 
system (Cavallaro, 2015). 

 
Figure 2.2: The Design of a Fuzzy Expert System (Cavallaro, 2015) 
 
  In a fuzzy inference model, often called 
approximate reasoning, the thought process relies 
on a series of if-then rules reflecting expert 
understanding (Bhaskarwar & Pete, 2021). Each 
conditional statement consists of an if-part (the 
premise) and a then-part (the conclusion). Within 
a fuzzy control system, knowledge is represented 
as a collection of rules, such as “if X is A then Y is 
B,” or more generally, “if 𝑋𝐼 is 𝐴1 and … and 𝑋𝑛 

is 𝐴𝑛 then 𝑌 is 𝐵”, where 𝐴, 𝐴𝑛 , 𝐵 are fuzzy sets. 
The knowledge base as seen in Figure 2.2, which 
includes general information about the problem 
domain, links premises to conclusions (Cavallaro, 
2015). 
  To demonstrate how the stages of a 
fuzzy inference system work, we start by 
converting the precise input values 𝑋𝑖 into fuzzy 

sets 𝑋̃𝑖, according to their respective input 
spaces. Second, the input fuzzy sets 
𝑥̃1, 𝑥̃2, … . , 𝑥̃𝑛) are compared with the 
corresponding if-part fuzzy sets in each rule’s 
antecedent. This comparison is represented as 
(Alakhras et al., 2020): 

( )ˆ,
j j

i i i
a S A X=

  (0.1) 
Here, S is a function used to evaluate how well the 
input fuzzy sets align with the antecedents defined 
in each fuzzy rule. Common choices for the S 
function include the max operator and other t-
conorms (Alakhras et al., 2020). 

Third, the individual matching degrees 𝑎𝑖
𝑗
 

obtained from all n input fuzzy sets for a given rule 
are combined using a T operator (Alakhras et al., 
2020): 

( )1
, ,

j j

j n
T a a = 

  (0.2) 
 
  Typical T operators include the 
minimum function, the product, or more general t-
norm connectives. 
Fourth, the computed value 𝜇𝑗  activates the 

corresponding rule’s output fuzzy set 𝑌𝑗  (Alakhras 

et al., 2020). In many fuzzy system models, 𝑌𝑗  is 

represented by its centroid, leading to: 
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( ),
j j j

f f Y=
        (0.3) 

 
  Fifth, the results from all activated rules, 

𝑓𝑗, 𝑗 = 1,2, … , 𝑚, are combined into one final 

output fuzzy set (Alakhras et al., 2020) as: 

( )1 2
, , ,

m
y g f f f= 

        (0.4) 
 
  In practice, a Mamdani-type fuzzy 
inference system commonly applies the centre-of-
gravity method for defuzzification, while a Takagi-
Sugeno approach often uses a weighted average 
based on membership values (Alakhras et al., 
2020; Karimi et al., 2022). 
 
Palm tree network architecture 
  The palm-tree-inspired architecture is 
designed to manage both data aggregation and 
routing in underwater sensor networks. In this 
approach, the sink node triggers the process by 
sending a request to collect data, which is then 
aggregated as it flows upward through the network 
hierarchy, enhancing scalability (Krishnaswamy & 
Manvi, 2022). At the top, the crown symbolizes the 
palm canopy. Within this canopy, spines branch 
out, each bearing leaflets connected at a junction 
by petioles. Each leaflet attaches to the leaf via a 
rachis and collectively covers every node in the 
Underwater Wireless Acoustic Sensor Network 
(UWASN). Where petioles meet the spines, a 
master centre node is assigned per spine. A local 
centre node represents the rachis link to the spine 
(Krishnaswamy & Manvi, 2022). 
 
Palm tree structure 
  Below are key terms related to the palm 
tree architecture (Krishnaswamy & Manvi, 2022): 

1. Palm tree structure: This represents the 
network’s overall form, including 
leaflets/fronds and a sink node, with 
numerous intermediate nodes in 
between.  

2. Master centre node: This is an 
intermediate node located where petioles 
meet. It gathers aggregated data from 

leaflets connected through local-level 
aggregation. 

3. Local centre node: Another intermediate 
node placed along the rachis of a leaflet. 
Local aggregation is performed here to 
eliminate redundant information collected 
from nearby underwater sensor nodes. 

4. Number of neighboring UW-sensor 
nodes: The total count of active 
underwater sensor nodes within a certain 
communication range. 

5. Residual Energy: This defines the energy 
remaining in the node's battery. The 
choices reflect typical WSN energy 
profiles and support intelligent decision-
making for energy conservation. 

6. Distance to Master Node: This is the 
distance between a sensor node and its 
associated master node, bounded within 
the communication range R. The range is 
expressed as 𝑑𝑚 ∈ [0, 𝑅], where 𝑅 is 
the communication range.  

7. Petiole angle: The angle describing 
where the master centre node is located, 
measured from a reference direction 
extending from the sink to nearby 
underwater sensor nodes. 

8. Leaflet angle: The angle formed between 
the leaflets along the rachis and the local 
centre on the spine, referenced against 
the main (midrib) axis. 

9. Energy-to-distance ratio: is a critical 
feature for assessing the suitability of a 
node for data aggregation and relay 
operations. It combines two essential 
factors which are residual energy (Er) and 
distance to the master node (dm). The 
ratio is calculated as: 
 

r

e d

m

E
R

d
−
=

+ò
    (2.5) 

In equation Error! Reference source not found.
, 𝜖 is a small positive constant to avoid division by 
zero.  
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Figure 2.3: Environment of a Palm Tree-Structured Network (Krishnaswamy & Manvi, 2022) 
 
  The data aggregation framework, 
shown in Figure 2.3, illustrates the positions of the 
sink, local centres, and master centres arranged 
along the leaflets and at the junctions of the 
petioles in a palm tree structure. Each local centre 
collects and consolidates data from its 
neighboring underwater sensor nodes. A local 
aggregation agent (LAA), started by the final local 

centre, then gathers this aggregated information 
and forwards it to the appropriate master centre. 
In a similar way, the master aggregation agent 
(MAA), activated by the last master centre, 
combines the data from all master centres and 
delivers it to the sink (Krishnaswamy & Manvi, 
2022). Table 2.1 lists the notations used to 
describe the system. 

 
Table 2. 1: Notations (Krishnaswamy & Manvi, 2022) 

Descriptions Symbols 

Communication range of UW-sensor node R 

Neighbour node count 𝑁𝑐  

Weight factor of Master(m)/Local (l) centre selection 𝑊𝑓/𝑊𝑙 

Arbitrary radius of junction of petioles r 

Number of petioles 𝑁𝑝 
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Descriptions Symbols 

Initial energy of every node 𝐸𝑖 

Residual/Utilized energy of every node 𝐸𝑅𝑡
/𝐸𝑢 

Euclidean distance between nodes l and m 𝐸𝑑𝑙,𝑚
 

Threshold distance of master/local centre 𝐷𝑝𝑡ℎ/𝐷lth  

Angle between master centre/petiole and node i 𝜃𝑝𝑖
 

Total number of leaflets connected to the spine 𝐿𝑎total  

Degree of neighbor nodes 𝐷𝑛𝑡ℎ  

Distance between petioles 𝑃𝑑  

Petiole angle 𝜃𝑝 

Angle between petioles 𝜃petiole  

Probability of occurrence of redundant data 𝑃𝑅𝑑𝑎
 

Redundant data set 𝑅𝑑𝑎 

Angle between local centre/leaflet and node i 𝜃𝑙𝑖
 

Probability of aggregated data 𝑃𝐴𝑔  

Data aggregation time at master/local centres 𝑀𝑎𝑎𝑔𝑡𝑖𝑚𝑒/𝐿𝑎𝑎𝑔𝑡𝑖𝑚𝑒  

Time required to aggregate from leaflet 𝑇𝑙𝑒𝑎𝑓  

Total time for aggregation 𝑇𝑜𝑎𝑔𝑡𝑖𝑚𝑒  

Selection procedure for petiole/master centres 
  Petioles emerge from their junction 
located at the upper part of the palm’s trunk. The 
distance between petioles, denoted as 𝑃𝑑  
(Krishnaswamy & Manvi, 2022), can be calculated 
by: 

2
d nth

P R D=  
         (0.5) 

 
  The number of petioles in the crown’s 
junction area, 𝑁𝑝 (Krishnaswamy & Manvi, 2022), 

is determined by: 

2
p

d

r
N

P


=

          (2.7) 

  The junction’s radius r in equation (2.8) 
(Krishnaswamy & Manvi, 2022) is found using: 

nth
r R D= 

           (2.8) 
 
  The value of 𝐷𝑛𝑡ℎ  in equation (2.8) 
(Krishnaswamy & Manvi, 2022) is chosen based 
on the desired number of direct and indirect 
neighbors for data aggregation. The petiole angle, 
𝜃petiole 𝑝, is given as: 

petiole 

360

p
N

 =
o

          (2.9) 

http://www.atbuftejoste.net/
mailto:joelharuna022@gmail.com


 
                                 JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(3), SEPTEMBER, 2025 
                              E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbuftejoste.com.ng 

Corresponding author: Joel Haruna 
  joelharuna022@gmail.com  
Department of Computer Engineering, Confluence University of Science and Technology, Osara, Kogi State - Nigeria.  
© 2025. Faculty of Technology Education. ATBU Bauchi. All rights reserved 

653 

  In equation (2.9) (Krishnaswamy & 
Manvi, 2022), the angle sets the spacing between 
petioles. The angle of a specific petiole p, denoted 
𝜃𝑝, for p = 1,2, … , 𝑁𝑝, is computed as: 

petiole p
p = 

         (2.10) 
 
  The petiole angle between neighboring 
underwater sensor nodes at the junction 
(considering node l and node m) is computed as: 

( )

( )( )

1
tan

i

l m

p

l m

y y

x x
 −

−
=

−
       (2.11) 

 
where (𝑥𝑙 , 𝑦𝑙) and (𝑥𝑚, 𝑦𝑚) represent the 
coordinates of node l and node m in equation 
(2.11), respectively (Krishnaswamy & Manvi, 
2022). 
  Master centre selection depends on 
which quadrant of the circle the petiole lies in. The 
junction of the petioles is considered as a circle, 
so the following four cases arise (Krishnaswamy & 
Manvi, 2022): 

1. Case I: If 𝑥𝑙 > 𝑥𝑚  and 𝑦𝑙 > 𝑦𝑚, 
master centre selection occurs in the 
first quadrant. 

2. Case II: If 𝑥𝑙 < 𝑥𝑚  and 𝑦𝑙 > 𝑦𝑚, 
master centre selection occurs in the 
second quadrant. 

3. Case III: If  𝑥𝑙 < 𝑥𝑚  and 𝑦𝑙 < 𝑦𝑚, 
master centre selection occurs in the 
third quadrant. 

4. Case IV: If 𝑥𝑙 > 𝑥𝑚  and 𝑦𝑙 < 𝑦𝑚, 
master centre selection occurs in the 
fourth quadrant. 

 
  The remaining (residual) energy, 𝐸𝑅𝑡

 

(Krishnaswamy & Manvi, 2022), available at each 
underwater sensor node can be found using: 

tR i u
E E E= −

         (2.12) 
 
where 𝐸𝑖  is the node’s initial energy and 𝐸𝑢 is the 
amount of energy it has already utilized in 
equation (2.12) (Krishnaswamy & Manvi, 2022). 
The Euclidean distance between any underwater 
sensor node l and a neighboring node m is 
determined by: 

,

2 2

l md l m l m
E x x y y= − + −

       (2.13) 
 
  In equation (2.13) (Krishnaswamy & 

Manvi, 2022), the weight factor 𝑊𝑓 for a given 

underwater sensor node depends on the number 
of nearby nodes 𝑁𝑐  and the node’s residual 

energy at time 𝑡𝐸𝑅𝑡
. The sink node’s UWSMA 

starts the master selection procedure by sending 
a query to its neighboring nodes. In response, 
each neighbor’s UWNMA calculates its own 𝑊𝑓 

and returns both its position and 𝑊𝑓 to the sink 

node’s agent. The weight factor is computed as: 

( )
tf R c

W K E N= 
        (2.14) 

 
where K is a constant value between 0 and 1 in 
equation (2.14).  
  During master centre selection at the 
petiole junction, underwater sensor nodes 
positioned at angle 𝜃𝑝 are considered. Each 

node’s threshold distance is represented as 𝐷𝑝𝑡ℎ

. If 𝐸𝑑(𝑙,𝑚) > 𝐷𝑝𝑡ℎ , the underwater sensor node 

is eligible to compete for the master centre role. 
Among the competing neighbors, the node with 

the highest 𝑊𝑓 is chosen by the UWSMA as the 

master centre (Petiole Aggregator - PA) 
(Krishnaswamy & Manvi, 2022). 
  If no suitable contender meets the 

threshold (𝐸𝑑𝑙𝑙,𝑚) > 𝐷𝑝𝑡ℎ), then 𝐷𝑝𝑡ℎ is 

adjusted (either increased or decreased) to find 
other candidates for PA selection. Once the first 
PA is selected at a given petiole angle, the 
UWSMA of that master centre triggers PASA. The 
PASA continues identifying subsequent PAs until 
it reaches the final master centre in the network. 
Throughout this process, PASA carries the IDs of 
each master centre to form a path linking all of 
them together (Krishnaswamy & Manvi, 2022). 
 
 
Designing an optimized palm tree fuzzy 
inference system (OPT-FIS) 
  This subsection details the development 
of the OPT-FIS, which leverages fuzzy logic for 
efficient selection of local and master centres, 
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optimizing energy use and data aggregation in 
UWSNs. 
 
Fuzzy logic system initialization 
  To select suitable local centre nodes 
dynamically, a FIS is designed and implemented. 
The system takes four inputs: leaflet angle (𝜃𝑙𝑚), 

residual energy (𝐸𝑟), distance to master node 
(𝑑𝑚), and energy-to-distance ratio (𝑅𝑒−𝑑). Each 
input was assigned three gaussian membership 
functions (MFs): Low, Medium, and High. These 
are presented in Table 3.2.

 
Table 3. 1: Membership Function Parameters for OPT-FIS Input Variables 

Input Variable Fuzzy 
Set 

Type Support 
Range 

Centre 
/ Peak 

Description 

Leaflet Angle (θ ∈ [0, 
360]) 

Low Gaussian Full support 60° Nodes aligned at narrow 
angles 

 
Medium Gaussian Full support 100° Moderately aligned 

nodes  
High Gaussian Full support 270° Nodes at wide angles 

Residual Energy (E ∈ 
[0, 10]) 

Low Gaussian Full support 2 Nodes with low battery 
levels 

 
Medium Gaussian Full support 6 Nodes with medium 

energy 
 

High Gaussian Full support 9 Nodes with sufficient 
energy 

Distance to Master 
Node (dₘ ∈ [0, R]) 

Near Gaussian Full support 
(scaled by R) 

¼ R  Nodes close to master 

 
Medium Gaussian Full support 

(scaled by R) 
½ R Nodes at moderate 

distance 
 

Far Gaussian Full support 
(scaled by R) 

¾R Nodes far from master 

Energy-to-Distance 
Ratio (Re-d) 

Low Trapezoidal [0, 0.5] Peak at 
0 to 0.3 

Unfavorable (low energy 
or far distance) 

 
Medium Triangular [0.3, 0.7] Peak at 

0.5 
Moderately suitable 
nodes 

 
High Trapezoidal [0.5, 1] Peak at 

1 
Favorable (high energy 
and short distance) 

1. Leaflet Angle (𝜃𝑙𝑚) : The centres (60, 
100, and 270 degrees) for low, medium, 
and high, respectively. The MFs are 
chosen based on network geometry and 
data distribution. The 60 degree 
represents nodes aligned in narrow 
angles, found in clustered topologies, 
where nodes share minimal overlapping 
communication areas. The 100 degree 

represents nodes with moderate angles, 
typically aligned in general network 
coverage scenarios, balancing 
redundancy and efficiency. The 270 
degree represents nodes at wide angles 
in high-redundancy regions.  

2. Residual Energy (𝐸𝑟) : The parameters 
(2, 6, 9) and spreads (42, 2.82, 102) are 
chosen to reflect low, medium, and high 
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energy distribution of the network, 
ensuring efficient resource allocation 
and prolonged network operation.  

3. Distance to Master Node (𝑑𝑚) : The 
centres of the membership functions are 
scaled relative to the communication 
range (𝑅) of the sensor node to reflect 
spatial distribution.  

 
  Energy-to-Distance Ratio (𝑅𝑒−𝑑) : Re-
d is computed using equation (2.5), where ε = 
0.001. ε is used to prevent division by zero. It is 
chosen to be small enough not to affect valid 
distance measurements, while ensuring numerical 
stability when nodes are extremely close to the 
master node. 
 
Nodes with unfavorable energy-to-distance ratios. 

( )Low 

1 if  0.3

0.5
if  0.3 0.5

0.5 0.3

0 if  0.5

e d

e d

e d e d

e d

R

R
MF R R

R

−

−

− −

−




−
=  

−
      (3.1) 

 
 
Nodes with moderately favorable ratios 

( )Medium 

0.3
 if  0.3 0.5

0.5 0.3

0.7
if  0.5 0.7

0.7 0.5

0  otherwise 

e d

e d

e d

e d e d

R
R

R
MF R R

−

−

−

− −

−
  −


−

=  
−



   (0.6) 

 
 
 
 
 
Nodes with favorable ratios 

( )

0 if 0.5

0.5
 if 0.5 1

1 0.5

1 if  1

e d

e d

High e d e d

e d

R

R
MF R R

R

−

−

− −

−




−
=  

−
  (3.3) 

  The ratio balances energy consumption 
and communication efficiency. Higher Re−d implies 
nodes are both energy-efficient and close to the 
master node, making them suitable for 
aggregation. Lower Re−d reflects poor energy or 
large distances, discouraging their selection. 

RESULT AND DISCUSSION 
  This section presents the results of the 
OPT-FIS performance evaluation. The analysis 
focuses on aggregation energy, aggregation time, 
aggregation ratio, and network lifetime as it 
performance metrics. These metrics provide 
insights into the effectiveness of the OPT-FIS in 
enhancing data aggregation and energy efficiency 
in UWSNs. 
 
Aggregation energy 
  The performance of the OPT-FIS is 
evaluated based on energy consumption during 
data aggregation. The results are analyzed and 
compared in Figures 4.1 across three different 
communication ranges of 400 m, 500 m, and 600 
m. 
 

 
(a) 
 

 
(b) 
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(c) 
Figure 4.1: Aggregation Energy Against the 
Number of Nodes Across (a) 400 (b) 500 and (c) 
600 Meters Communication Range 
 
  Figure 4.1a shows the variation in 
aggregation energy with respect to the number of 
nodes for a 400m communication range. The 
OPT-FIS demonstrates lower aggregation energy 
consumption compared to the baseline method 
(PS). This is due to the efficient selection of master 
and local centres, minimizing redundant data 
aggregation. The energy savings becomes more 
obvious as the number of nodes increases beyond 
100. The reduced energy consumption reflects the 
effectiveness of the OPT-FIS structure in 
optimizing data aggregation. 
  In Figure 4.1b, for a 500m 
communication range, the results indicate a 
similar trend. The aggregation energy for the OPT-
FIS remains lower than the PS, even as the 
number of nodes increases. As the 
communication range increases, the OPT-FIS 
effectively manages node connectivity and 
reduces energy use. 
  Figure 4.1c illustrates the results for a 
600m communication range. The extended 
communication range introduces more connected 
nodes, resulting in higher aggregation energy. 
Compared to the results of the PS method, the 
OPT-FIS consistently demonstrates better 
performance across all communication ranges. 
While the PS exhibits a linear increase in energy 
consumption with the number of nodes, the OPT-
FIS method maintains a controlled rise. This 
improvement can be attributed to the local centre 

selection strategy, which optimize the aggregation 
process by reducing unnecessary data 
transmissions and processing. 
 
Aggregation time 
  The same communication ranges of 
400, 500, and 600 meters were used to assess the 
aggregation time results, as shown in Figure 4.2. 
 

 
(a) 

 
(b) 

 
(c) 
Figure 4.2: Aggregation Time Against the Number 
of Nodes Across (a) 400 (b) 500 and (c) 600 
Meters Communication Range 
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  As seen in Figure 4.2a, the OPT-FIS 
consistently shows lower aggregation time 
compared to the PS for a 400m communication 
range. The time difference becomes more 
significant as the number of nodes increases. 
Figure 4.2b reveals a similar trend for the 500m 
communication range. The OPT-FIS maintains 
lower aggregation times across all node densities, 
with a notable gap emerging as the network grows 
deeper. For the 600m communication range, as 
illustrated in Figure 4.2c, the OPT-FIS continues 
to outperform the PS in terms of aggregation time, 
with the difference becoming more pronounced 
beyond 100 nodes. This consistent improvement 
reflects the system’s stabilization over time, where 
the benefits of distributed aggregation and 
efficient routing compensate for the minor delays 
seen during initial setup. 
  While the PS shows slightly better 
performance in energy and time for smaller 
networks (40 to 80 nodes), the OPT-FIS 
demonstrates advantages in larger and more 
complex n setworks, validating its scalability and 
overall efficiency. Lower aggregation time often 
corresponds to reduced energy consumption, as 
faster aggregation minimizes the duration of data 
transmission and processing.  
 
Aggregation ratio 
  The results for aggregation ratio are 
analyzed in Figures 4.3 across communication 
ranges of 400m, 500m, and 600m. 
 

 
(a) 

 
(b) 
 

 
(c)  
Figure 4.3: Aggregation Time Against the Number 
of Nodes Across (a) 400 (b) 500 and (c) 600 
Meters Communication Range 
 
  In Figure 4.3a, the OPT-FIS achieves a 
higher aggregation ratio than the PS for the 400m 
range. As the number of nodes increases, the gap 
in performance broadens, with the OPT-FIS 
reaching a higher aggregation ratio at 200 nodes. 
Figure 4.3b illustrates the aggregation ratio for the 
500m communication range. Similar to the 400m 
range, the OPT-FIS outperforms the PS as the 
network becomes deeper. For the 600m range 
shown in Figure 4.3c, the OPT-FIS continues to 
demonstrate a better aggregation ratio than the 
PS. As the number of nodes increases, the 
advantage of the OPT-FIS becomes more 
apparent. The superior aggregation ratio of the 
OPT-FIS across all communication ranges 
highlights its ability to aggregate data more 
effectively than the PS. This improvement aligns 
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with the reduced aggregation time and energy 
seen in previous results, as efficient aggregation 
processes reduce redundancy and increase the 
proportion of useful aggregated data. 
 
Network lifetime 
  The network lifetime findings were 
assessed using the same communication ranges 
of 400, 500 and 600 meters, as illustrated in Figure 
4.4. 

 
(a) 
 

 
(b) 

 
(c) 
Figure 4. 4: Network Lifetime Against the Number 
of Nodes Across (a) 400 (b) 500 and (c) 600 
Meters Communication Range 

  In Figure 4.4a, the network lifetime for 
both the OPT-FIS and PS increases with the 
number of nodes. However, the OPT-FIS 
consistently achieves a longer network lifetime 
compared to the PS, particularly as the number of 
nodes expands. As shown in Figure 4.4b for the 
500m communication range, the OPT-FIS 
maintains its advantage over the PS in terms of 
network lifetime. The gap becomes more 
significant as the network grows denser. In Figure 
4.4c, the OPT-FIS demonstrates the highest 
improvement in network lifetime for the 600m 
communication range. Although the PS method 
also improves as the number of nodes increases, 
it shows a lower overall network lifetime due to 
less effective energy management. On the other 
hand, the OPT-FIS achieves better energy 
efficiency through its adaptive node selection 
using a fuzzy inference system, which considers 
residual energy, distance, and node positioning. 
By dynamically selecting local centres based on 
current network conditions, it reduces 
unnecessary transmissions and balances the 
energy load across nodes.  
 
CONCLUSION 
  The results obtained confirm that the 
optimized palm tree fuzzy inference system (OPT-
FIS) improves energy efficiency and data 
aggregation in UWSNs compared to the PS 
method. In aggregation, OPT-FIS demonstrated 
improvements of 8.70%, 10.81%, and 7.98% for 
the ranges 400m, 500m, and 600m, respectively. 
These improvements are due to the hierarchical 
structure and dynamic selection of master and 
local centres, which reduce redundant data 
processing and enhance aggregation efficiency. 
To sum it up, these results validate that OPT-FIS 
provides a more scalable and energy-efficient 
approach to data aggregation in UWSNs. 
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