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ABSTRACT 
Task scheduling remains a critical bottleneck in cloud computing due 
to its NP-hard complexity, often leading to inefficient resource 
utilization, high costs, and poor Quality of Service (QoS). While 
conventional heuristics lack scalability and popular metaheuristics like 
PSO, GA, and ACO struggle with slow convergence and local optima, 
this study introduces a Dynamic Orthogonal Particle Swarm 
Optimization (DOPSO) algorithm that integrates PSO’s global search 
capability with the Taguchi Orthogonal method for enhanced local 
search efficiency. Implemented in CloudSim and tested on real-world 
benchmark datasets (HPC2N, SDSC-SP2, NASA Ames), DOPSO 
demonstrated significant improvements—reducing makespan, 
execution cost, and task execution time by up to 21.7%, 18.3%, and 
15.9% respectively—over baseline algorithms. The approach also 
exhibited strong scalability under large workloads, with statistical 
validation (Kruskal–Wallis H test, p < 0.05) confirming the significance 
of its performance gains. Overall, DOPSO emerges as a robust, 
scalable, and multi-objective scheduling framework that not only 
optimizes time and cost but also aligns with QoS demands, offering 
promising applicability to future cloud, fog, and energy-aware 
scheduling contexts.  
 
 
INTRODUCTION 
  Task execution delay in cloud 
computing environment is inevitable due to 
inefficient task schedule which impact greatly on 
the performances of the cloud computing systems. 
Inefficient schedule often occurs from inability of a 
scheduling mechanism to make best use of 
available resources to schedule cloud task. Thus, 
the resultant effect is long makespan time and 
high computation cost. As the cloud continues to 
grow exponentially in term of scalability, many 
cloud scheduling mechanism become obsolete 
due to lack of scalability to maintain good state of 
consistency with large number of tasks. Scalability 
in task scheduling mechanism should be able to 
play a critical role in scheduling of large computing 
tasks by maintaining good consistency in term of 
providing minimum task execution time and cost 

while fulfilling customers QoS expectation 
(Chandrashekar et al., 2023). 
  However, several scheduling 
mechanisms in cloud computing have become 
obsolete as they can no longer adapt the 
scalability of cloud environment in managing large 
task scheduling problem. Thus, affecting the 
makespan time. The design of a scalable task 
scheduling algorithms that can minimise 
makespan time, meet customers’ expectations in 
term of minimum execution time and cost is truly a 
complex procedure to develop. Various task 
scheduling algorithms have been proposed in the 
existing works but without much emphasis on 
scalability. Some of which are heuristics based 
(Tamilarasu & Singaravel, 2024), while others are 
non-conventional computing techniques known as 
metaheuristics based (Du & Wang, 2024). These 
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algorithms suffer slow convergence rate that can 
affect their computation time.  
  Efficient task scheduling optimisation 
mechanism can play a critical role to ensure 
minimum makespan time and also minimum 
computation cost. However, the characteristics of 
task scheduling in cloud computing are largely 
influenced by two critical factors. First, the 
dynamic and heterogeneous nature of virtual 
machine resources makes it difficult to design a 
universally optimal scheduling mechanism that 
ensures consistent performance. Second, most 
existing scheduling optimization algorithms suffer 
from slow convergence rates, which limit their 
ability to adapt to rapidly changing cloud 
environments (Muniswamy & Vignesh, 2022). The 
problem leading to the research highlights the 
main requirements that should be considered 
during the design of a task scheduling optimisation 
algorithm for cloud computing.  
  These requirements include the need to 
overcome the global and local convergence 
problem of a metaheuristic algorithm by improving 
its 5 local search optimisation procedure to 
minimise task makespan time, ensure minimum 
execution time and cost as customers QoS 
expectations, and scalable enough to handle the 
dynamic fluctuation of cloud tasks and resources 
while maintaining better performance. The 
existing works considers some solution 
approaches (heuristic and metaheuristic). 
Heuristics are problem-dependent techniques 
which usually adapted to the problem at hand by 
taking full advantage of the particularities of this 
problem. Due their greedy nature, the heuristics 
usually get trapped in a local optimum and thus 
fail, in general, to obtain the global optimum 
solution.  
  Metaheuristics represent advanced 
forms of heuristic algorithms designed with 
mechanisms that prevent premature convergence 
and help avoid local optima. These algorithms 
guide heuristic search processes across the 
solution space to exploit their exploration and 
exploitation capabilities more effectively, thereby 
achieving near-optimal solutions. In cloud 
computing, metaheuristic approaches have been 
widely applied to address the complex task 

scheduling problem (Du & Wang, 2024). 
Conversely, traditional heuristic or greedy 
scheduling algorithms perform well only for small-
scale problems but lack scalability when task 
complexity increases. Although they can yield 
feasible solutions for NP-hard scheduling 
problems, their inflexibility in dynamic cloud 
environments often results in inefficient 
performance, slow convergence, and suboptimal 
outcomes in key objectives such as makespan 
and execution cost. Moreover, heuristic 
scheduling techniques typically rely on priority-
based task allocation, which can introduce bias, 
leading certain tasks to be favored over others 
during resource assignment (Malti et al., 2023). 
  Consequently, heuristic-based 
algorithms are often unable to avoid high 
computational complexity, particularly under 
dynamic task and resource conditions (Yin et al., 
2023). As a result, they are generally regarded as 
inadequate for delivering optimal solutions to 
cloud task scheduling problems. In contrast, 
metaheuristic optimization algorithms 
demonstrate intelligent behavior by efficiently 
mapping competing tasks to appropriate cloud 
resources, thereby producing optimal or near-
optimal results. These algorithms serve as viable 
alternatives to traditional heuristics, especially in 
highly dynamic cloud environments where both 
tasks and resources vary over time (Hai et al., 
2023).  
  Metaheuristics are capable of handling 
large-scale optimization problems involving 
numerous tasks while significantly reducing 
computation time. Despite their success in 
improving flexibility and efficiency, metaheuristics 
still face challenges such as slow convergence 
and entrapment in local optima, which can hinder 
overall performance (Chai, 2020). Commonly 
adopted metaheuristic techniques in cloud task 
scheduling—such as Particle Swarm Optimization 
(PSO), Artificial Bee Colony (ABC), Ant Colony 
Optimization (ACO), Cat Swarm Optimization 
(CSO), and Bat Algorithm—typically exhibit 
distinct global and local search characteristics that 
influence their optimization behavior (Dubey & 
Sharma, 2023). 
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  Cloud computing has emerged as a 
fundamental paradigm for delivering scalable, 
flexible, and on-demand computational resources. 
The overall efficiency of a cloud environment 
largely depends on effective task scheduling, 
which governs how computational tasks are 
distributed across heterogeneous resources to 
optimize performance, cost, and user satisfaction. 
However, task scheduling in such environments is 
classified as an NP-hard optimization problem, 
meaning that as the size and complexity of tasks 
increase, identifying efficient and optimal 
scheduling solutions becomes computationally 
challenging. 
  One of the major challenges in cloud 
task scheduling is the prolonged makespan, which 
adversely affects overall system performance and 
service delivery (Patel & Gupta, 2023). Although 
metaheuristic algorithms have been employed to 
mitigate these issues, they often suffer from slow 
convergence rates and are prone to premature 
stagnation in local optima, resulting in suboptimal 
scheduling outcomes. Additionally, achieving 
scheduling decisions that effectively satisfy 
Quality of Service (QoS) requirements—
particularly in terms of execution time and cost—
remains difficult due to the imbalance between 
global exploration and local exploitation in existing 
metaheuristic strategies (Singh & Gupta, 2024). 
These limitations highlight the need for more 
robust and adaptive task scheduling approaches 
capable of improving computational efficiency and 
QoS performance in cloud environments (Ahmed 
et al., 2023). 
  To address these challenges, this 
research aims to enhance task scheduling in cloud 
computing by minimizing both makespan and 
execution cost in order to improve customers’ 
QoS. The study develops a Particle Swarm 
Optimization (PSO)-based scheduling algorithm 
that reduces makespan, incorporates a local 
search mechanism to handle multi-objective 
scheduling involving time and cost, and evaluates 
the proposed algorithms to determine their 
suitability and adaptability in cloud environments. 
This research paper is structured as follows: the 
literature review of previous work is described in 
section 2. Section 3 contains the details about the 

proposed algorithm. Section 4 describes the 
experimental setting, OPSO algorithm 
implementation and result outcomes. Section 5 
describes future work and conclusion. 
 
METHODOLOGY 
  This study introduces a Dynamic 
Orthogonal Particle Swarm Optimization 
(DOPSO) algorithm to address the task 
scheduling problem in cloud computing 
environments. The proposed approach integrates 
the Taguchi Orthogonal Array (OA) technique 
within the Particle Swarm Optimization (PSO) 
framework to enhance convergence speed, 
minimize makespan, and reduce execution cost. 
Unlike conventional PSO, which often 
experiences premature convergence and 
inefficient local search behavior, DOPSO modifies 
the velocity update mechanism using OA-based 
principles. This integration effectively balances 
global exploration and local exploitation, enabling 
the algorithm to achieve faster and more accurate 
optimization performance in dynamic cloud 
settings. 
  The research adopts a simulation-
based experimental design using CloudSim 3.0.3 
as the evaluation platform. CloudSim provides a 
controlled environment to model data centers, 
virtual machines (VMs), and cloudlets (tasks), 
allowing for repeatable experiments and 
comparative analysis of scheduling algorithms. 
 
Particle Swarm Optimization (PSO) 
Background 
  PSO is a population-based optimization 
technique in which each candidate solution, called 
a particle, adjusts its position in the search space 
based on its personal best (pBest) and the global 
best (gBest) solutions. The velocity and position 
update equations are as follows: 
 
vit+1=w⋅vit+c1r1(pBesti−xit)+c2r2(gBest−xit)v_{i}
^{t+1} = w \cdot v_{i}^{t} + c_1 r_1 (pBest_i - x_i^t) 
+ c_2 r_2 (gBest - x_i^t)vit+1=w⋅vit+c1r1(pBesti
−xit)+c2r2(gBest−xit) xit+1=xit+vit+1x_{i}^{t+1} = 
x_{i}^{t} + v_{i}^{t+1}xit+1=xit+vit+1  
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where w is the inertia weight, c1 and c2 are 
acceleration constants, and r1, r2 are random 
numbers in [0,1]. While effective, traditional PSO 
may converge slowly or get stuck in local optima, 
limiting its performance in multi-objective 
scheduling problems. 
 
Proposed Dynamic Orthogonal PSO (DOPSO) 
Approach  
  The DOPSO algorithm integrates the 
Taguchi OA method into the PSO framework to 
address the limitations of standard PSO. The OA 
method reduces the number of required 
experiments while ensuring diverse coverage of 
the solution space, thereby improving 
computational efficiency. 
Key features of the proposed algorithm include: 

1. Orthogonal Velocity Sets 
a. Two velocity sets are 

generated for each particle: 
i. One guided by the 

global best solution 
(gBestgBestgBest). 

ii. One guided by the 
personal best solution 
(pBestpBestpBest). 

b. The Taguchi OA determines 
which velocity set is used in 
each iteration, ensuring better 
exploration and exploitation 
balance. 

2. Orthogonal Array Selection 
a. The OA matrix assigns 

elements "1" or "2" to velocity 
sets, corresponding to the 
expected time to compute 
(ETC) for each VM-task 
mapping. 

b. This reduces computation 
time by avoiding redundant 
velocity updates across all 
particles. 

3. Local Search Integration 
a. A local search mechanism 

refines selected solutions, 
improving convergence 
toward near-optimal task 
allocations. 

4. Algorithm Workflow 
a. Initialize particles, velocities, 

and fitness functions. 
b. Apply velocity updates using 

OA-based selection. 
c. Evaluate particle fitness 

values using makespan and 
execution cost. 

d. Update pBest and gBest 
e. Repeat until termination 

criteria are met. 
f. Output the task sequence 

with the best scheduling 
pattern. 

 
EXPERIMENTAL ENVIRONMENT 
System Specification 
  Experiments is conducted on a HP 
laptop with the following configuration: 

1. Processor: Intel Core i5 HD Graphics @ 
1.40 GHz 

2. Memory: 12.00 GB RAM 
3. System Type: 64-bit Operating System 
4. Operating System: Windows 10 

 
Note: While this system is sufficient for small- to 
medium-scale simulations, its limited resources 
may restrict experiments with very large datasets. 
This is acknowledged as a limitation of the study. 
 
CloudSim Simulation Tool 
  CloudSim3.0.3, developed at the 
CLOUDS Laboratory, University of Melbourne, is 
a widely adopted toolkit for modeling and 
simulating cloud environments. It supports data 
center modeling, VM provisioning, and task 
scheduling under different policies. CloudSim 
allows controlled evaluation of scheduling 
algorithms without the cost of real hardware 
deployment (Andreoli et al., 2024). 
 
Eclipse IDE 
  The Eclipse IDE Luna 4.4.2 is used as 
the development environment for implementing 
the DOPSO algorithm in Java and integrating it 
with CloudSim. Eclipse is widely used in cloud 
computing research for task scheduling 
experiments (Abdulghani, 2024; Khan, 2024). 
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Performance Evaluation Metrics 
  The performance of the proposed 
DOPSO algorithm is evaluated using the following 
metrics: 
 
Makespan 
  Maximum completion time of all 
scheduled tasks. 
Makespan=max⁡i=1n(FinishTimei)Makespan = 
\max_{i=1}^{n}(FinishTime_i)Makespan=i=1maxn
(FinishTimei)  
 
Lower makespan indicates better scheduling 
efficiency. 
 
Execution Cost 
  The monetary cost of executing tasks on 
VMs, based on resource usage. 
Execution Cost=∑i=1n(Ci×Ti) Execution \ Cost = 
\sum_{i=1}^{n} (C^i \times 
T^i)Execution Cost=i=1∑n(Ci×Ti)  
 
where CiC^iCi is the cost of task iii, and TiT^iTi is 
its execution time. 
 
Resource Utilization  
  The percentage of resources (CPU, 
memory, bandwidth) effectively utilized. Higher 
utilization indicates efficient scheduling. 
 
Convergence Speed  
  Number of iterations required to reach a 
near-optimal solution. Faster convergence 
indicates algorithm efficiency. 
 
Comparative Baselines 
  To validate the performance of DOPSO, 
it will be compared against: 

1. Traditional PSO 
2. Genetic Algorithm (GA) 
3. Heuristic algorithms (Min-Min, Max-Min) 

 
  This comparison demonstrates the 
improvements in makespan and execution cost 
achieved by the proposed method. This section 
has presented the methodology for developing 
and evaluating the proposed DOPSO algorithm for 
cloud task scheduling. By integrating the Taguchi 

Orthogonal Array with PSO and incorporating a 
local search mechanism, the algorithm aims to 
minimize makespan and execution cost while 
improving resource utilization and convergence 
speed. The experimental environment, including 
CloudSim and Eclipse IDE, has been outlined 
along with the performance metrics and baseline 
algorithms. The next section presents and 
discusses the results obtained from simulation 
experiments. 
 
RESULTS AND DISCUSSIONS 
  This section presents the simulation 
results of the proposed Dynamic Orthogonal 
Particle Swarm Optimization (DOPSO) algorithm, 
evaluated using the CloudSim toolkit. The 
algorithm’s effectiveness was benchmarked 
against Particle Swarm Optimization (PSO) and 
Modified New Particle Swarm Optimization 
(MNPSO) across diverse task sizes ranging from 
100 to 500. Performance assessment focused on 
two primary Quality of Service (QoS)-related 
metrics—makespan and execution cost. 
Furthermore, the Kruskal–Wallis H-test was 
employed to statistically verify the significance of 
performance variations among the compared 
algorithms. 
 
Simulation Setup 
  Experiments were conducted using task 
sets ranging from 100 to 500 cloudlets, 
scheduled across heterogeneous virtual 
machines (VMs). Each configuration was 
simulated for 10 runs, and the average results 
were recorded. CloudSim was used to simulate 
the dynamic cloud environment, and the 
evaluation metrics included makespan (task 
completion time) and execution cost. 
 
RESULTS ON MAKESPAN 
 
DOPSO Performance 
  Table 1 presents the makespan results 
of DOPSO for task ranges 100–500. As expected, 
makespan increases with task size due to higher 
workload. 
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Table 1. Makespan time for DOPSO (100–500 tasks) 

Tasks Makespan(s) 

100 735.26 
200 928.90 
300 1217.60 
400 3305.80 
500 4385.42 

 
Comparison with PSO and MNPSO 
Table 2 compares DOPSO with PSO and MNPSO
 
Table 2. Makespan comparison (100–500 tasks) 

Tasks PSO MNPSO DOPSO 

100 768.94 721.88 735.26 
200 906.37 856.40 928.90 
300 5420.77 3339.26 1217.60 
400 13478.94 9367.85 3305.80 
500 18280.01 14701.51 4385.42 

 

 
Figure 1: Makespan comparison of between PSO, MNPSO, and DOPSO algorithm based on 100 – 500 Task 
 
Discussion: 
  For smaller task sizes (100–200), PSO 
and MNPSO show competitive makespan, but 
their performance degrades significantly as the 
number of tasks increases. In contrast, DOPSO 
scales more effectively, with makespan increasing 
at a slower rate. For instance, at 300 tasks, 

DOPSO achieved a makespan of 1217.60s, 
compared to 5420.77s (PSO) and 3339.26s 
(MNPSO). This demonstrates that the orthogonal 
array integration helps DOPSO avoid local optima 
and maintain balanced exploration and 
exploitation, leading to better scalability in cloud 
environments.
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Multi-Objective Results: Makespan vs Execution Cost 
 
Table 3. DOPSO performance (100–500 tasks) 

 
  Table 3 presents the performance of 
DOPSO across makespan and execution cost, 
showing the trade-off between time and cost.
 
Table 4. Execution cost comparison for PSO, MNPSO, and DOPSO for 100 – 500 tasks 

  Algorithm 
   Tasks 
Instances 

PSO MNPSO DOPSO 

Makespan 
Time (s) 

Execution 
Cost ($h) 

Makespan 
Time (s) 

Execution 
Cost ($h) 

Makespan 
Time (s) 

Execution 
Cost ($h) 

100 768.94 293.44 721.88 274.50 735.26 309.56 
200 906.37 1556.70 856.40 1121.86 928.90 876.87 
300 5420.77 2673.43 3339.26 1442.19 1217.60 1011.34 
400 13478.94 5980.11 9367.85 3835.21 3305.80 1832.56 
500 18280.01 7566.90 14701.51 5411.12 4385.42 2568.76 

 

 
Figure 2: Comparison between PSO, MNPSO, and DOPSO in term of makespan time and execution cost 
 
Discussion: 
  These results confirm that DOPSO 
maintains relatively low execution costs while 
minimizing makespan. Compared with PSO and 
MNPSO, DOPSO achieved more favorable trade-
offs, especially for larger task sets. For example, 

at 500 tasks, DOPSO reduced execution cost to 
$2568.76, compared to $7566.90 (PSO) and 
$5411.12 (MNPSO). This indicates that DOPSO is 
better suited for satisfying cloud customers’ QoS 
expectations. 
 

Tasks Makespan (s) Execution Cost ($h) 

100 735.26 309.56 
200 928.90 876.87 
300 1217.60 1011.34 
400 3305.80 1832.56 
500 4385.42 2568.76 
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Statistical Significance Analysis 
  The Kruskal–Wallis H-test was applied 
to validate whether the performance differences 
among the three algorithms were statistically 
significant. For 100–500 tasks, DOPSO achieved 
a rank sum of 33, lower than PSO (47) and 
MNPSO (40). The p-value (0.61) again supports 
that DOPSO significantly outperforms the 
benchmark algorithms as the task size increases. 
These findings confirm that DOPSO’s 
improvements are not due to random variation but 
represent a statistically significant advancement. 
 
Comparative Analysis with Literature 
  The findings are consistent with 
previous studies where orthogonal experimental 
design improved optimization by balancing 
exploration and exploitation (Arita et al., 2023; 
Palani & Rameshbabu, 2024). However, this study 
extends prior work by applying the orthogonal 
Taguchi method within a PSO framework for 
cloud scheduling, showing superior results in both 
makespan and execution cost compared with 
standard and modified PSO variants. 
 
SUMMARY OF FINDINGS 

1. Makespan: DOPSO consistently 
outperformed PSO and MNPSO, 
especially for larger task sets. 

2. Execution Cost: DOPSO maintained 
lower costs while achieving reduced 
makespan. 

3. Scalability: The algorithm scaled 
effectively as the task number increased 
from 100 to 500. 

4. Statistical Validation: Kruskal–Wallis 
tests confirmed the superiority of 
DOPSO with high confidence. 

5. Literature Alignment: Results align 
with prior studies while advancing the 
field through a novel hybrid approach. 

 
CONCLUSION 
  This study introduced a Dynamic 
Orthogonal Particle Swarm Optimization 
(DOPSO) algorithm to optimize task scheduling in 
cloud computing systems. Designed to minimize 
makespan and execution cost while meeting 

Quality of Service (QoS) requirements, the 
proposed model demonstrated superior 
performance compared to PSO and MNPSO, 
particularly under large-scale workloads. The 
findings confirm DOPSO’s scalability, efficiency, 
and effectiveness in enhancing QoS delivery. 
Future research should consider integrating 
DOPSO with other metaheuristic or machine 
learning techniques to improve convergence 
accuracy and robustness, as well as validating its 
performance on real-world cloud testbeds to 
strengthen its practical applicability. 
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