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ABSTRACT
Task scheduling remains a critical bottleneck in cloud computing due ~ARTICLE INFO
to its NP-hard complexity, often leading to inefficient resource —Articte History
T . . . . Received: August, 2025
utilization, high costs, and poor Quality of Service (Q0S). While  Received in revised form: September, 2025
conventional heuristics lack scalability and popular metaheuristics like  Accepted: October, 2025
PSO, GA, and ACO struggle with slow convergence and local optima,  Published online: December, 2025
this study introduces a Dynamic Orthogonal Particle Swarm KEYWORDS
Optimization (DOPSO) algorithm that integrates PSO'’s global search 1,5k scheduling, PSO, Metaheuristic,
capability with the Taguchi Orthogonal method for enhanced local  Orthogonal, Cloud
search efficiency. Implemented in CloudSim and tested on real-world
benchmark datasets (HPC2N, SDSC-SP2, NASA Ames), DOPSO
demonstrated  significant  improvements—reducing makespan,
execution cost, and task execution time by up to 21.7%, 18.3%, and
156.9% respectively—over baseline algorithms. The approach also
exhibited strong scalability under large workloads, with statistical
validation (Kruskal-Wallis H test, p < 0.05) confirming the significance
of its performance gains. Overall, DOPSO emerges as a robust,
scalable, and multi-objective scheduling framework that not only
optimizes time and cost but also aligns with QoS demands, offering
promising applicability to future cloud, fog, and energy-aware
scheduling contexts.

while fulfiling customers QoS expectation

INTRODUCTION

Task execution delay in cloud
computing environment is inevitable due to
inefficient task schedule which impact greatly on
the performances of the cloud computing systems.
Inefficient schedule often occurs from inability of a
scheduling mechanism to make best use of
available resources to schedule cloud task. Thus,
the resultant effect is long makespan time and
high computation cost. As the cloud continues to
grow exponentially in term of scalability, many
cloud scheduling mechanism become obsolete
due to lack of scalability to maintain good state of
consistency with large number of tasks. Scalability
in task scheduling mechanism should be able to
play a critical role in scheduling of large computing
tasks by maintaining good consistency in term of
providing minimum task execution time and cost

(Chandrashekar et al., 2023).

However, several scheduling
mechanisms in cloud computing have become
obsolete as they can no longer adapt the
scalability of cloud environment in managing large
task scheduling problem. Thus, affecting the
makespan time. The design of a scalable task
scheduling algorithms that can  minimise
makespan time, meet customers’ expectations in
term of minimum execution time and cost is truly a
complex procedure to develop. Various task
scheduling algorithms have been proposed in the
existing works but without much emphasis on
scalability. Some of which are heuristics based
(Tamilarasu & Singaravel, 2024), while others are
non-conventional computing techniques known as
metaheuristics based (Du & Wang, 2024). These
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algorithms suffer slow convergence rate that can
affect their computation time.

Efficient task scheduling optimisation
mechanism can play a critical role to ensure
minimum makespan time and also minimum
computation cost. However, the characteristics of
task scheduling in cloud computing are largely
influenced by two critical factors. First, the
dynamic and heterogeneous nature of virtual
machine resources makes it difficult to design a
universally optimal scheduling mechanism that
ensures consistent performance. Second, most
existing scheduling optimization algorithms suffer
from slow convergence rates, which limit their
ability to adapt to rapidly changing cloud
environments (Muniswamy & Vignesh, 2022). The
problem leading to the research highlights the
main requirements that should be considered
during the design of a task scheduling optimisation
algorithm for cloud computing.

These requirements include the need to
overcome the global and local convergence
problem of a metaheuristic algorithm by improving
its 5 local search optimisation procedure to
minimise task makespan time, ensure minimum
execution time and cost as customers QoS
expectations, and scalable enough to handle the
dynamic fluctuation of cloud tasks and resources
while maintaining better performance. The
existing works considers some  solution
approaches (heuristic and  metaheuristic).
Heuristics are problem-dependent techniques
which usually adapted to the problem at hand by
taking full advantage of the particularities of this
problem. Due their greedy nature, the heuristics
usually get trapped in a local optimum and thus
fail, in general, to obtain the global optimum
solution.

Metaheuristics represent advanced
forms of heuristic algorithms designed with
mechanisms that prevent premature convergence
and help avoid local optima. These algorithms
guide heuristic search processes across the
solution space to exploit their exploration and
exploitation capabilities more effectively, thereby
achieving near-optimal solutions. In cloud
computing, metaheuristic approaches have been
widely applied to address the complex task

scheduling problem (Du & Wang, 2024).
Conversely, traditional heuristic or greedy
scheduling algorithms perform well only for small-
scale problems but lack scalability when task
complexity increases. Although they can yield
feasible solutions for NP-hard scheduling
problems, their inflexibility in dynamic cloud
environments  often results in inefficient
performance, slow convergence, and suboptimal
outcomes in key objectives such as makespan
and execution cost. Moreover, heuristic
scheduling techniques typically rely on priority-
based task allocation, which can introduce bias,
leading certain tasks to be favored over others
during resource assignment (Malti et al., 2023).

Consequently, heuristic-based
algorithms are often unable to avoid high
computational complexity, particularly under
dynamic task and resource conditions (Yin et al.,
2023). As a result, they are generally regarded as
inadequate for delivering optimal solutions to
cloud task scheduling problems. In contrast,
metaheuristic optimization algorithms
demonstrate intelligent behavior by efficiently
mapping competing tasks to appropriate cloud
resources, thereby producing optimal or near-
optimal results. These algorithms serve as viable
alternatives to traditional heuristics, especially in
highly dynamic cloud environments where both
tasks and resources vary over time (Hai et al.,
2023).

Metaheuristics are capable of handling
large-scale optimization problems involving
numerous tasks while significantly reducing
computation time. Despite their success in
improving flexibility and efficiency, metaheuristics
still face challenges such as slow convergence
and entrapment in local optima, which can hinder
overall performance (Chai, 2020). Commonly
adopted metaheuristic techniques in cloud task
scheduling—such as Particle Swarm Optimization
(PSO0), Artificial Bee Colony (ABC), Ant Colony
Optimization (ACO), Cat Swarm Optimization
(CS0O), and Bat Algorithm—typically exhibit
distinct global and local search characteristics that
influence their optimization behavior (Dubey &
Sharma, 2023).
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Cloud computing has emerged as a
fundamental paradigm for delivering scalable,
flexible, and on-demand computational resources.
The overall efficiency of a cloud environment
largely depends on effective task scheduling,
which governs how computational tasks are
distributed across heterogeneous resources to
optimize performance, cost, and user satisfaction.
However, task scheduling in such environments is
classified as an NP-hard optimization problem,
meaning that as the size and complexity of tasks
increase, identifying efficient and optimal
scheduling solutions becomes computationally
challenging.

One of the major challenges in cloud
task scheduling is the prolonged makespan, which
adversely affects overall system performance and
service delivery (Patel & Gupta, 2023). Although
metaheuristic algorithms have been employed to
mitigate these issues, they often suffer from slow
convergence rates and are prone to premature
stagnation in local optima, resulting in suboptimal
scheduling outcomes. Additionally, achieving
scheduling decisions that effectively satisfy
Quality of Service (QoS) requirements—
particularly in terms of execution time and cost—
remains difficult due to the imbalance between
global exploration and local exploitation in existing
metaheuristic strategies (Singh & Gupta, 2024).
These limitations highlight the need for more
robust and adaptive task scheduling approaches
capable of improving computational efficiency and
QoS performance in cloud environments (Ahmed
etal., 2023).

To address these challenges, this
research aims to enhance task scheduling in cloud
computing by minimizing both makespan and
execution cost in order to improve customers’
QoS. The study develops a Particle Swarm
Optimization (PSO)-based scheduling algorithm
that reduces makespan, incorporates a local
search mechanism to handle multi-objective
scheduling involving time and cost, and evaluates
the proposed algorithms to determine their
suitability and adaptability in cloud environments.
This research paper is structured as follows: the
literature review of previous work is described in
section 2. Section 3 contains the details about the

proposed algorithm. Section 4 describes the
experimental  setting, = OPSO  algorithm
implementation and result outcomes. Section 5
describes future work and conclusion.

METHODOLOGY

This study introduces a Dynamic
Orthogonal ~ Particle  Swarm  Optimization
(DOPSOQ) algorithm to address the task
scheduling problem in cloud computing
environments. The proposed approach integrates
the Taguchi Orthogonal Array (OA) technique
within the Particle Swarm Optimization (PSO)
framework to enhance convergence speed,
minimize makespan, and reduce execution cost.
Unlike  conventional PSO, which  often
experiences  premature  convergence and
inefficient local search behavior, DOPSO modifies
the velocity update mechanism using OA-based
principles. This integration effectively balances
global exploration and local exploitation, enabling
the algorithm to achieve faster and more accurate
optimization performance in dynamic cloud
settings.

The research adopts a simulation-
based experimental design using CloudSim 3.0.3
as the evaluation platform. CloudSim provides a
controlled environment to model data centers,
virtual machines (VMs), and cloudlets (tasks),
allowing for repeatable experiments and
comparative analysis of scheduling algorithms.

Particle = Swarm
Background

PSO is a population-based optimization
technique in which each candidate solution, called
a particle, adjusts its position in the search space
based on its personal best (pBest) and the global
best (gBest) solutions. The velocity and position
update equations are as follows:

Optimization  (PSO)

vit+1=w-vit+c1r1(pBesti-xit)+c2r2(gBest-xit)v_{i}
Mt+1} = wcdot v_{i}Nt} + ¢_1r_1 (pBest_i - x_it)
+ ¢_2 r_2 (gBest - x_i*)vit+1=w-vit+c1r1(pBesti
=xit)+c2r2(gBest—xit) xit+1=xit+vit+1x_{i}*{t+1} =
X_{ifMt} + v_{ip{t+1)xit+1=xit+vit+1
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where w is the inertia weight, ¢1 and c2 are
acceleration constants, and r1, r2 are random
numbers in [0,1]. While effective, traditional PSO
may converge slowly or get stuck in local optima,
limiting its performance in multi-objective
scheduling problems.

Proposed Dynamic Orthogonal PSO (DOPSO)
Approach

The DOPSO algorithm integrates the
Taguchi OA method into the PSO framework to
address the limitations of standard PSO. The OA
method reduces the number of required
experiments while ensuring diverse coverage of
the solution space, thereby improving
computational efficiency.
Key features of the proposed algorithm include:

1. Orthogonal Velocity Sets

a. Two velocity sets are
generated for each particle:

i. One guided by the
global best solution
(gBestgBestgBest).

i. One guided by the
personal best solution
(pBestpBestpBest).

b. The Taguchi OA determines
which velocity set is used in
each iteration, ensuring better
exploration and exploitation

balance.
2. Orthogonal Array Selection
a. The OA matrix assigns

elements "1" or "2" to velocity
sets, corresponding to the
expected time to compute
(ETC) for each VM-task
mapping.

b. This reduces computation
time by avoiding redundant
velocity updates across all
particles.

3. Local Search Integration

a. A local search mechanism

refines selected solutions,

improving convergence
toward near-optimal task
allocations.

4.  Algorithm Workflow

a. Initialize particles, velocities,
and fitness functions.

b.  Apply velocity updates using
OA-based selection.

c. Evaluate particle fitness
values using makespan and
execution cost.

d. Update pBest and gBest

e. Repeat until termination
criteria are met.

f.  Output the task sequence
with the best scheduling
pattern.

EXPERIMENTAL ENVIRONMENT
System Specification
Experiments is conducted on a HP
laptop with the following configuration:
1. Processor: Intel Core i5 HD Graphics @
1.40 GHz
2. Memory: 12.00 GB RAM
3. System Type: 64-bit Operating System
4. Operating System: Windows 10

Note: While this system is sufficient for small- to
medium-scale simulations, its limited resources
may restrict experiments with very large datasets.
This is acknowledged as a limitation of the study.

CloudSim Simulation Tool

CloudSim3.0.3, developed at the
CLOUDS Laboratory, University of Melbourne, is
a widely adopted toolkit for modeling and
simulating cloud environments. It supports data
center modeling, VM provisioning, and task
scheduling under different policies. CloudSim
allows controlled evaluation of scheduling
algorithms without the cost of real hardware
deployment (Andreoli et al., 2024).

Eclipse IDE

The Eclipse IDE Luna 4.4.2 is used as
the development environment for implementing
the DOPSO algorithm in Java and integrating it
with CloudSim. Eclipse is widely used in cloud
computing research for task scheduling
experiments (Abdulghani, 2024; Khan, 2024).

Corresponding author: Muhammad Garba

B4 garbamga@gmail.com

Department of Computer Science, Federal University, Bimin Kebbi, Kebbi, Nigeria.
© 2025. Faculty of Technology Education. ATBU Bauchi. Al rights reserved

23


http://www.atbuftejoste.net/
mailto:aaaaa1@gmail.com

JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(4), DECEMBER, 2025
E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbufstejoste.com

Performance Evaluation Metrics

The performance of the proposed
DOPSO algorithm is evaluated using the following
metrics:

Makespan

Maximum completion time of all
scheduled tasks.
Makespan=maxiji=1n(FinishTimei)Makespan =
\max_{i=1}*{n}(FinishTime_i)Makespan=i=1maxn
(FinishTimei)

Lower makespan indicates better scheduling
efficiency.

Execution Cost

The monetary cost of executing tasks on
VMs, based on resource usage.
Execution Cost=3 i=1n(CixTi) Execution \ Cost =
\sum_{i=1}Mn} (CAi \times
T*i)Execution Cost=i=13 n(CixTi)

where CiC7Ci is the cost of task iii, and TiTATi is
its execution time.

Resource Utilization

The percentage of resources (CPU,
memory, bandwidth) effectively utilized. Higher
utilization indicates efficient scheduling.

Convergence Speed

Number of iterations required to reach a
near-optimal  solution.  Faster convergence
indicates algorithm efficiency.

Comparative Baselines
To validate the performance of DOPSO,
it will be compared against:
1. Traditional PSO
2. Genetic Algorithm (GA)
3. Heuristic algorithms (Min-Min, Max-Min)

This comparison demonstrates the
improvements in makespan and execution cost
achieved by the proposed method. This section
has presented the methodology for developing
and evaluating the proposed DOPSO algorithm for
cloud task scheduling. By integrating the Taguchi

Orthogonal Array with PSO and incorporating a
local search mechanism, the algorithm aims to
minimize makespan and execution cost while
improving resource utilization and convergence
speed. The experimental environment, including
CloudSim and Eclipse IDE, has been outlined
along with the performance metrics and baseline
algorithms. The next section presents and
discusses the results obtained from simulation
experiments.

RESULTS AND DISCUSSIONS

This section presents the simulation
results of the proposed Dynamic Orthogonal
Particle Swarm Optimization (DOPSO) algorithm,
evaluated using the CloudSim toolkit. The
algorithm’s  effectiveness was benchmarked
against Particle Swarm Optimization (PSO) and
Modified New Particle Swarm Optimization
(MNPSO) across diverse task sizes ranging from
100 to 500. Performance assessment focused on
two primary Quality of Service (QoS)-related
metrics—makespan  and  execution  cost.
Furthermore, the Kruskal-Wallis H-test was
employed to statistically verify the significance of
performance variations among the compared
algorithms.

Simulation Setup

Experiments were conducted using task
sets ranging from 100 to 500 cloudlets,
scheduled across  heterogeneous  virtual
machines (VMs). Each configuration was
simulated for 10 runs, and the average results
were recorded. CloudSim was used to simulate
the dynamic cloud environment, and the
evaluation metrics included makespan (task
completion time) and execution cost.

RESULTS ON MAKESPAN

DOPSO Performance

Table 1 presents the makespan results
of DOPSO for task ranges 100-500. As expected,
makespan increases with task size due to higher
workload.
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Table 1. Makespan time for DOPSO (100-500 tasks)

Tasks Makespan(s)
100 735.26
200 928.90
300 1217.60
400 3305.80
500 4385.42
Comparison with PSO and MNPSO
Table 2 compares DOPSO with PSO and MNPSO
Table 2. Makespan comparison (100-500 tasks)
Tasks PSO MNPSO DOPSO
100 768.94 721.88 735.26
200 906.37 856.40 928.90
300 5420.77 3339.26 1217.60
400 13478.94 9367.85 3305.80
500 18280.01 14701.51 4385.42
=—==P50 =B=MNPSO =d=DOPSO
25000
20000
. 15000
=
=
g 10000
E
< 5000 i
0 — ("' -
1@} 210 300 400 500
-5000
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Figure 1: Makespan comparison of between PSO, MNPSO, and DOPSO algorithm based on 100 — 500 Task

Discussion:

For smaller task sizes (100-200), PSO
and MNPSO show competitive makespan, but
their performance degrades significantly as the
number of tasks increases. In contrast, DOPSO
scales more effectively, with makespan increasing
at a slower rate. For instance, at 300 tasks,

DOPSO achieved a makespan of 1217.60s,
compared to 5420.77s (PSO) and 3339.26s
(MNPSO). This demonstrates that the orthogonal
array integration helps DOPSO avoid local optima
and maintain balanced exploration and
exploitation, leading to better scalability in cloud
environments.
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Multi-Objective Results: Makespan vs Execution Cost

Table 3. DOPSO performance (100-500 tasks)

Tasks Makespan (s) Execution Cost ($h)
100 735.26 309.56
200 928.90 876.87
300 1217.60 1011.34
400 3305.80 1832.56
500 4385.42 2568.76

Table 3 presents the performance of
DOPSO across makespan and execution cost,
showing the trade-off between time and cost.

Table 4. Execution cost comparison for PSO, MNPSO, and DOPSO for 100 — 500 tasks

orithm PSO MNPSO DOPSO
Tas Makespan  Execution = Makespan Execution  Makespan  Execution
Instances Time (s) Cost ($h) Time (s) Cost ($h) Time (s) Cost ($h)
100 768.94 293.44 721.88 274.50 735.26 309.56
200 906.37 1556.70 856.40 1121.86 928.90 876.87
300 5420.77 2673.43 3339.26 144219 1217.60 1011.34
400 13478.94 5980.11 9367.85 3835.21 3305.80 1832.56
500 18280.01 7566.90 14701.51 5411.12 4385.42 2568.76
m PSO Makespan Time(s) m PSO Execution Cost (Sh)
m MNPSO Makespan Time (s) m MNPSO Execution Cost (Sh)
m DOPSO Makespan Time (s) m DOPSO Execution Cost(Sh) §
] -
% in
2 -
. 5
- 8
- @
ITT o Aflvwrs s
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Figure 2: Comparison between PSO, MNPSO, and DOPSO in term of makespan time and execution cost

Discussion:

These results confirm that DOPSO
maintains relatively low execution costs while
minimizing makespan. Compared with PSO and
MNPSO, DOPSO achieved more favorable trade-
offs, especially for larger task sets. For example,

at 500 tasks, DOPSO reduced execution cost to
$2568.76, compared to $7566.90 (PSO) and
$5411.12 (MNPSO). This indicates that DOPSO is
better suited for satisfying cloud customers’ QoS
expectations.
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Statistical Significance Analysis

The Kruskal-Wallis H-test was applied
to validate whether the performance differences
among the three algorithms were statistically
significant. For 100-500 tasks, DOPSO achieved
a rank sum of 33, lower than PSO (47) and
MNPSO (40). The p-value (0.61) again supports
that DOPSO significantly outperforms the
benchmark algorithms as the task size increases.
These findings confirm that DOPSO’s
improvements are not due to random variation but
represent a statistically significant advancement.

Comparative Analysis with Literature

The findings are consistent with
previous studies where orthogonal experimental
design improved optimization by balancing
exploration and exploitation (Arita et al., 2023;
Palani & Rameshbabu, 2024). However, this study
extends prior work by applying the orthogonal
Taguchi method within a PSO framework for
cloud scheduling, showing superior results in both
makespan and execution cost compared with
standard and modified PSO variants.

SUMMARY OF FINDINGS

1. Makespan: DOPSO consistently
outperformed PSO and MNPSO,
especially for larger task sets.

2. Execution Cost: DOPSO maintained
lower costs while achieving reduced
makespan.

3. Scalability: The algorithm scaled
effectively as the task number increased
from 100 to 500.

4. Statistical Validation: Kruskal-Wallis
tests confirmed the superiority of
DOPSO with high confidence.

5. Literature Alignment: Results align
with prior studies while advancing the
field through a novel hybrid approach.

CONCLUSION

This study introduced a Dynamic
Orthogonal ~ Particle  Swarm  Optimization
(DOPSO) algorithm to optimize task scheduling in
cloud computing systems. Designed to minimize
makespan and execution cost while meeting

Quality of Service (QoS) requirements, the
proposed  model  demonstrated  superior
performance compared to PSO and MNPSO,
particularly under large-scale workloads. The
findings confirm DOPSQO'’s scalability, efficiency,
and effectiveness in enhancing QoS delivery.
Future research should consider integrating
DOPSO with other metaheuristic or machine
learning techniques to improve convergence
accuracy and robustness, as well as validating its
performance on real-world cloud testbeds to
strengthen its practical applicability.
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