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ABSTRACT

The increasing mismatch between electricity demand and available A;\ITJCIlejslgl:yo

supply in modern distribution networks has intensified the need for  Received: August, 2025

intelligent and automated load management strategies. This study Received in revised form: September, 2025
presents the development of a MATLAB App Designer-based Smart ~ Accepted: November, 2025

Grid Load Management System that integrates hybrid optimization ~PUPished online: December, 2025
techniques to ensure efficient, fair, and priority-sensitive power KeywoRDS

allocation across multiple load centers. The system combines Genetic ~ Smart Grid, Load Management, Hybrid
Algorithm (GA) optimization with auxiliary heuristic and rule-based  Optimization, Genetic Algorithm, - Priority
repair operators to handle conflicting constraints, maintain critical-load Index

floors, and minimize supply and demand imbalance. A graphical user

interface (GUI) was developed to provide operators with real-time

capabilities, including adjustable priority indices, algorithm selection

(GA, PSO, hybrid GA-greedy), demand specification, and automated

report generation. The framework was validated using an 18-load-

center dataset representing a typical urban 33 kV distribution feeder,

with total demand exceeding available supply under several stress

scenarios. Results show that the hybrid optimization approach

achieved faster convergence, improved load satisfaction levels, and

superior critical-load preservation compared with standalone GA or

conventional load-shedding methods. The system’s performance was

further verified through ETAP-based feasibility checks, confirming its

operational viability for real-time deployment. Overall, the developed

platform provides a scalable, operator-friendly, and optimization-

driven solution for modern smart grid load management.

INTRODUCTION
Electric power distribution networks in

allocation frameworks results in inequitable
distribution of available power, inefficient

developing economies continue to operate under
severe structural and operational stress. Chronic
generation  deficits, aging  distribution
infrastructure, and limited automation frequently
force utilities to resort to manual load shedding as
the primary mechanism for balancing supply and
demand [1-2]. These traditional practices are often
subjective, non-transparent, and insensitive to the
operational priorities of critical facilities such as
hospitals, water treatment plants, and security
installations. As peak demand continues to
escalate while supply growth remains stagnant,
the absence of intelligent, data-driven load

utilization of constrained resources, and increased
risk of feeder overload and system instability.

The evolution of smart grid concepts
supported by advances in computational
intelligence  offers  significant potential ~ for
addressing these long-standing challenges.
Optimization techniques such as Genetic
Algorithms (GA) and Particle Swarm Optimization
(PSO) have been widely investigated for load
allocation and demand-side management due to
their ability to handle nonlinear, multi-objective,
and constrained optimization landscapes.
However, most existing implementations remain

Corresponding author: A. S. Adaira
B4 suleiman21.aminu@edouniversity.edu.ng

Department of Electrical and Electronic Engineering, Edo University lyamho, Edo State.
© 2025. Faculty of Technology Education. ATBU Bauchi. Al rights reserved


http://www.atbuftejoste.net/
mailto:suleiman21.aminu@edouniversity.edu.ng

JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 13(4), DECEMBER, 2025
E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbufstejoste.com

confined to offline simulation environments and
lack mechanisms to reconcile optimization outputs
with real-world operational constraints [3]. Critical-
load floors, fairness tie-breaking rules, and system
feasibility checks are often not embedded within
the optimization logic. Furthermore, the absence
of operator-oriented interfaces prevents practical
adoption, leaving a substantial gap between
academic research outcomes and deployment-
ready tools for utility control rooms.

In response to these limitations, this
study proposes a MATLAB App Designer-based
Smart Grid Load Management System that
integrates hybrid optimization techniques tailored
for constrained distribution networks. The
developed framework combines the global search
capability of GA with rule-based heuristics and
greedy repair operators to enforce allocation
feasibility, preserve high-priority loads, and
improve convergence speed. A dedicated
graphical user interface (GUI) enables operators
to configure available supply levels, adjust load
priority indices, select optimization modes, and
visualize allocation outcomes through bar charts,
tables, and automatically generated reports. The
optimization engine incorporates an enhanced
fitness function that embeds priority weighting,
fairness constraints, load satisfaction ratios, and
penalty terms for infeasibility or supply demand
mismatch, making the system suitable for real-
time decision support.

To evaluate performance under realistic
operating conditions, the system is tested using
data from an 18-load-center 33 kV feeder
subjected to  multiple  constrained-supply
scenarios. Comparative assessments  are
conducted against conventional load shedding
procedures and standalone GA optimization to
quantify improvements in fairess, critical-load
preservation, and computational efficiency. In
addition, all optimized allocations undergo ETAP
load flow simulation to verify compliance with
voltage limits, feeder loading margins, and
transformer capacity constraints. The validation
results demonstrate that the proposed hybrid
optimization framework not only improves
allocation equity and operational robustness but

also significantly enhances usability for
distribution system operators.

This work contributes a technically
rigorous yet operationally deployable platform for
automated load management in distribution
networks. By integrating hybrid evolutionary
optimization into a GUI-driven tool, the study
bridges the gap between theoretical smart grid
models and field-ready decision-support systems.
The software’s modular design makes it adaptable
to other feeders and utilities, and it establishes a
foundation for future enhancements including
SCADA integration, real-time metering interfaces,
and cloud-based demand response applications.

REVIEW OF FUNDAMENTAL CONCEPT

In this section, some fundamental
concept that are related to this research are
discussed in subsequent subsection.

Smart Grid Load Management and Demand
Response

Smart grid load management has
evolved as a key strategy for improving reliability,
reducing system stress, and ensuring equitable
distribution of limited supply. Traditional load
shedding approaches are typically rule-based and
rely on subjective operator judgment, leading to
suboptimal and often unfair allocation of power
during supply deficits [4]. Modern demand
response mechanisms incorporate automation,
real-time monitoring, and optimization, enabling
distribution utilities to adjust loads dynamically in
response to fluctuating supply conditions [5-6].
Recent studies emphasize the importance of
priority-sensitive  allocation  frameworks  that
recognize the socio-economic criticality of
different load categories, particularly in developing
nations where essential services depend on stable
power [7]. However, implementation gaps persist
between algorithmic models and field-ready tools
capable of real-time deployment.

Optimization Techniques for Load Allocation

Optimization  techniques especially
heuristic and population-based algorithms have
been widely applied to solve nonlinear, multi-
constraint load allocation problems. Genetic
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Algorithms (GA) are among the most widely
adopted due to their robustness, global search
capability, and adaptability to multiple objective
functions [8]. Despite these strengths, standalone
GA methods often exhibit slow convergence and
may produce infeasible solutions when strict
operational constraints are imposed. Particle
Swarm Optimization (PSO) has also been
explored for load management, offering faster
convergence but sometimes suffering from
premature stagnation in local optima [9-10]. Other
techniques such as Simulated Annealing (SA), Ant
Colony  Optimization (ACO), and hybrid
evolutionary methods have been applied with
various levels of success [11]. Hybrid optimization
frameworks combining GA with greedy heuristics,
fuzzy logic, or constraint repair mechanisms have
shown promise in improving solution feasibility,
especially in problems with priority-based or
minimum-supply constraints [12-13]. These hybrid
approaches tend to outperform single algorithms
by leveraging global exploration and local
refinement simultaneously.

Fitness Function

In Genetic Algorithm (GA) optimization,
a fitness function is a mathematical criterion used
to evaluate the quality or suitability of candidate
solutions with respect to the objectives of the
problem [14]. Within smart grid applications,
particularly in  Automated Load Demand
Response (ALDR) frameworks, the fitness
function serves as the key mechanism guiding the
evolutionary search towards solutions that
balance technical efficiency, socio-economic
faimess, and operational feasibility. For the GA-
based ALDR model developed in this study, the
fitness function integrates multiple performance
objectives, including:

1. Minimization of Energy Not Supplied
(ENS): Ensuring that the difference
between total demand and allocated
power is minimized, thereby reducing
service interruptions across the feeder
(19]

2. Priority Satisfaction: Incorporating the
Priority Index (PI) of each load centre,
the fitness function weights allocations

to favor critical loads such as hospitals,
waterworks, and communication hubs
while guaranteeing minimum supply
through criticality floors [16].

3. Faimess Enhancement: Using metrics
such as the grid-Gini coefficient, the
function penalizes solutions that
excessively favor high-priority loads at
the expense of low-priority but socially
relevant loads, ensuring a more
equitable distribution [17].

Mathematically, the fitness function can
be represented as a weighted combination of
these objectives:

F(x) = a SI(x) - B ENS(x) - y G(x) (1

Where: SI(x) = Priority-weighted Satisfaction
Index, ENS(x) = Energy Not Supplied, G(x) = Grid-
Gini coefficient representing allocation fairness. a,
B, y = weighting factors to balance competing
objectives

This multi-objective fitness formulation
ensures that GA candidates are evaluated not
only for technical performance but also for socio-
economic relevance and equitable allocation.
Furthermore, by integrating ETAP-in-the-loop
feasibility checks, the fitness function implicitly
penalizes solutions that violate voltage limits, line
loading, or radial topology constraints, thereby
coupling mathematical optimization with real-
world operability [18].

Reliability and Performance Indices
A. System  Average Interruption
Frequency Index (SAIFI)

The SAIFI measures the average number of
sustained interruptions a consumer experiences
over a given period, typically a year. It is
expressed as:

SAIFI = 2N )
Nt

where N; is the total number of customer
interruptions and Nr is the total number of
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connected customers (IEEE Std. 1366-2012).
SAIFI provides insight into how frequently outages
occur and is widely used to benchmark utility
performance. In Nigeria, SAIFI values remain
high, reflecting frequent feeder interruptions that
affect consumer confidence and economic
activities [19].

System Average Interruption Duration Index
(SAIDI)

The SAIDI measures the average total
duration of sustained interruptions experienced by
a customer in a year. It is given as:

2 Up.Ng

SAIDI = = (3)

where Ui represents the customer interruption
durations (in hours), and Nr is the total number of
customers served. SAIDI captures the severity of
outages from a temporal perspective. High SAIDI
values indicate longer service restoration times
and greater customer inconvenience. In reliability-
oriented [20] optimization frameworks, reducing
SAIDI is often a critical goal alongside minimizing
ENS.

B. Satisfaction Index (Sl)
Beyond traditional reliability indices, the
Sl has been increasingly used to measure how
well power allocation aligns with customer
expectations and socio-economic priorities. Sl is
typically expressed as a percentage of demand
satisfied relative to total demand:

A

T

SL= = %0, 2 %100 (4)

In this study, Sl is closely related to the
S, which evaluates whether high-priority loads
(e.g., hospitals, water treatment plants) are
adequately served even under constrained supply
conditions. Other related performance indicators
include Loss of Load Probability (LOLP) and Loss
of Load Expectation (LOLE), which provide
probabilistic measures of system adequacy [21]
Together, these indices provide a comprehensive
assessment of system performance from both
technical and consumer perspectives.

Genetic Algorithm (GA) Fundamentals

The Genetic Algorithm (GA) is a
metaheuristic inspired by the principles of natural
selection and genetics, introduced by Holland in
the 1970s [22]. A GA works by evolving a
population of potential solutions (chromosomes)
toward better solutions through iterative
processes.

a. Chromosome Encoding: Each
chromosome represents a candidate
solution to the optimization problem. In
power systems, this may include binary,
integer, or real-number encodings of
load allocation decisions, feeder
switching  states, or  generator
schedules. For load allocation in weak
grids, each gene within a chromosome
may represent the power assigned to a
load centre, subject to feeder and
supply constraints.

b.  Population: A set of chromosomes
forms a population, which evolves
across generations. The diversity of the
population is crucial for exploring the
solution space effectively and avoiding
premature convergence.

c. Fitness Function: The fitness function
evaluates the quality of each
chromosome. It is problem-specific and
typically seeks to maximize priority-
based satisfaction of critical loads while
minimizing ENS, SAIFI, and SAIDI.
Mathematically, for this study, the
fitness function can be expressed as:

F (x)

= W151+ WZ(W)

1
+ W (SAIDI n SAIFI) ®)

where w1, w2, w3 are weighting factors reflecting
the relative importance of satisfaction index,
energy reliability, and interruption minimization.

Priority-Based Allocation Models
Priority-based load allocation models
assign weights to consumer categories based on
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criticality, socio-economic impact, or operational
importance. Priority indices have been used to
guarantee minimum power levels for hospitals,
waterworks, and high-value commercial clusters
[23]. Some models integrate priority functions
directly into objective formulations, while others
apply hierarchical constraints that cannot be
violated [24]. However, existing works often lack
mechanisms to balance priority with fairness. Most
frameworks also fail to incorporate tie-breaking
logic or dynamic adjustments when two or more
loads share identical priority levels. This creates
ambiguity in practical implementation.

GUI-Based Smart Grid Decision Support Tools

Graphical User Interfaces (GUIs) play a
crucial role in bridging the gap between complex
optimization models and real-world operators.
MATLAB App Designer has emerged as a robust
environment for building interactive engineering
applications, offering integrated visualization,
optimization toolboxes, and file export features
[25]. Despite these advantages, few studies have
utilized MATLAB App Designer to develop real-
time load management tools that integrate
optimization, reporting, and operator decision-
making. Existing GUI-based solutions tend to
focus on educational purposes or simplified load
flow visualization rather than end-to-end
operational automation.

ETAP-Assisted Power System Validation

ETAP (Electrical Transient Analyzer
Program) is widely used for load flow, short-circuit,
and reliability evaluation in power systems [26].
Several research studies recommend validating
optimization-based allocation models using ETAP
to ensure operational feasibility, equipment
protection, and adherence to voltage limits [27].
Yet, few works integrate ETAP validation as part
of an iterative optimization—verification cycle. Most
studies treat ETAP as a post-processing tool
rather than an operational checkpoint.

MATERIAL AND METHODOLOGY
Materials and Equipment

The materials used include a laptop
personal computer of appropriate configuration
with MATLAB and ETAP software.

Experimental Procedure

The primary data for this research for
the 33 kV feeders were sourced from Abuja
Electricity Distribution Company (AEDC). The
categories of data obtained are:

a. Load Centre Characteristics: This
contains the facility names, load ratings
(MW), transformer capacities, and feeder
interconnection points.

b.  Priority Indices: Expert-assigned
criticality weights for each load centre,
based on socio-economic importance
(e.g., hospitals, water works, higher
institutions, and commercial clusters).

c. Historical Reliability Records: System
Average Interruption Frequency Index
(SAIFI), System Average Interruption
Duration Index (SAIDI), and Energy Not
Supplied (ENS) values, serving as
baseline performance metrics.

d. Operational Records: Peak demand logs,
transformer outage history, and AEDC
supply schedules, used to characterize
variability.

Also, synthetic Data was generated in
MATLAB to capture edge-case conditions beyond
the historical record, and the scenarios include:

a. Severe Shortfall Scenarios: Available
power set to 30 — 50% of peak demand
to test allocation under extreme
shortages.

b. Contingency Scenarios: Outages of
specific transformers or feeder sections,
used to simulate radial constraints.

c. Overload Stress Tests: Demand surges
above historical peaks (10-20%) to
examine GA response in non-standard
operating envelopes.

Table 1 shows the load centers with the
priority assignment and their classifications in
descending order.
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Table 1: Load Centers, Transformer Ratings, Load Demand, and Priority Classification

Load Centre Transformer Rating Demand Priority  Classification
(MVA) (MW) Index

FMC Hospital 2.50 1.50 0.99 Highly Critical
Federal University Lokoja 1.50 1.00 0.96 Highly Critical
Lokoja Water Works 2.00 1.20 0.93 Highly Critical
Telecom Masts 3.15 2.00 0.89 Critical
Fire Service Station 2.00 1.40 0.86 Critical
Force Headquarters 2.00 1.20 0.83 Critical
Army Barracks 1.50 1.00 0.81 Critical
Power Holding Office 0.75 0.50 0.78 Critical
Government House 2.50 1.50 0.74 Moderately Critical
CBN Office 3.15 2.00 0.70 Moderately Critical
Banks Area 2.00 1.20 0.68 Moderately Critical
Mega Transport Terminal 1.25 0.80 0.66 Moderately Critical
Filling Station Area 0.63 0.40 0.63 Moderately Critical
Court Line 3.15 2.00 0.60 Moderately Critical
Industrial Area 4.00 2.50 0.50 Low Priority
Commercial Area 4,00 2.80 0.45 Low Priority
NYSC Camp 0.75 0.50 0.40 Low Priority
Zone 8 Residential Area 2.50 1.50 0.35 Low Priority
Totals 39.33 25.00

(Source: AEDC, Lokoja Zonal Records Unit)

T, wimin(x;D;)
GA Problem Formulation and Model Design max SI == 12{11 w;.D; (6)
A 33 kV distribution feeder with N load
centres is modeled, each represented by a min ENS = ¥V, (D; — x;)* @)

demand Di and allocated power xi.. The total
available supply is S. Each load is assigned a
criticality floor ai, Di, where ai € [0,1] specifies the
minimum mandatory allocation fraction for
essential facilities such as hospitals, waterworks,
or communication hubs etc. This study integrates
several novel optimization features into the GA-
based ALDR framework, including priority-
anchored allocation, fairness shaping, and loss-
aware feasibility coupling with ETAP.

Objective Functions
The system’s dual objective is to
maximize the priority-weighted Satisfaction Index
(SI) and minimize Energy Not Supplied (ENS),
both key indicators of power system performance
(Billinton and Allan, 1996; Al-Saedli et al., 2017).
The dual objective is expressed as:

where wi is the normalized priority index, Di is the
demand, and xi is the power allocation to load i.
The Satisfaction Index ensures that high-priority
loads are favored while maintaining system-wide
allocation balance. These two indicators are
widely used in power system performance
evaluation (Kothari and Nagrath, 2016; Deep and
Das, 2014; Kennedy and Eberhart, 2004).

Power Balance Constraint

Transmission and distribution losses
are explicitly accounted for using ETAP’s active
power loss estimate LA(x). The total allocation
must not exceed the net available power:

Lix<S-L(x) (8)
This loss-corrected projection ensures

system consistency between mathematical
optimization and physical feeder constraints,
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distinguishing the model from loss-agnostic GA
models reported in earlier studies (Eremia and
Shahidehpour, 2018; Adisa et al., 2024; Mahmoud
et al., 2020).

Loss-Aware Repair/Projection (Rv)

To ensure energy consistency after
accounting for feeder losses, allocations are
adjusted via a loss-corrected projection:

r_ S-L(x)

=S % ©
where w; is the normalized socio-economic priority
index, Di the demand, and x; the allocated power.
This objective formulation follows the multi-
objective optimization framework in smart grids,
which balances technical efficiency and socio-
economic fairness (Deb, 2019; Liu and Singh,
2024; Dasgupta and Michalewicz, 2018). This
correction ensures that the total distributed power
respects actual available capacity after accounting
for ETAP-estimated losses, distinguishing the
framework from loss-agnostic  optimization
models.

Embedding Socio-Economic Priority Indices
Each load iis represented by demand Di
and a criticality floor ai, Di, where ai€[0,1] denotes
the minimum mandatory allocation fraction for
critical facilities (e.g., hospitals, water works). The
GA fitness incorporates a priority-weighted
Satisfaction Index (Sl) defined as figure 3.1:

Critical Floors for Essential Services

To operationalize  socio-economic
prioritization, each load centre is assigned a
priority weight wi derived from normalized socio-
economic indices representing criticality, service
relevance, and load type. Critical loads (e.g.,
hospitals, waterworks, communication centres)
are assigned minimum allocation guarantees
using the constraint:

xi2 o, Di VI € C (10)

where C denotes the subset of critical load centers
and a; defines the minimum allowable supply

fraction to prevent complete outage in essential
services. The GA fitness incorporates these
constraints and priority weights to guide the
population  toward  balanced, high-priority
allocations (Deep and Das, 2014; Deb, 2019;
Kennedy and Eberhart, 2004). This hybrid
strategy improves grid resilience during severe
shortages, consistent with global smart grid
reliability trends (Wang et al., 2022; Eremia and
Shahidehpour, 2018).

Fairness Tie-Break via Grid-Gini Index
To prevent repeated starvation of low-
priority but socially relevant loads, tie-breaking
among solutions of similar Sl is guided by a
grid-Gini index:

_ ZIL‘V=1 Z?’=1|xi.xj|

2N2.%

G (11)

where x is the mean allocation. Lower Gini values
indicate more equitable sharing, which improves
fairness without undermining critical load
satisfaction. A lower Gini value indicates a more
equitable load distribution, complementing critical-

load guarantees without compromising fairness
(Deb, 2019; Billinton and Allan, 1996)

Implementation and Benchmarking

The GA is implemented using
MATLAB’s Global Optimization Toolbox, using an
adaptive crossover-mutation strategy to maintain
diversity and promote convergence.

Benchmark Algorithms
To assess comparative performance,
the GA is benchmarked against:
1. Particle Swarm Optimization (PSO)
2. Simulated Annealing (SA)
3. ANN-Assisted GA (Hybrid ANN-GA)

Evaluation Metrics
The following metrics evaluate
algorithmic convergence, operational feasibility,
and fairess:
1. Convergence rate (iterations to stability)
2. Average Satisfaction Index (SI)
3. Energy Not Supplied (ENS)
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4. Allocation fairess (Gini coefficient)

These metrics quantify improvements
relative to heuristic and metaheuristic baselines.

ETAP-in-the-Loop Feasibility Shaper
Conventional GA solutions are often
evaluated only on mathematical constraints. In
this design, GA candidates are subjected to ETAP
feeder simulations, which check for:
a. Voltage Limits: 0.95 <V <1.05 p.u.
b. Thermal loading: < 100% of rated
capacity for lines and transformers
c. Feeder topology: Radial structure
preservation
d. Loss feasibility: Active loss < 0.002 MW

Violations trigger adaptive penalties
within the GA fitness function, enabling the
algorithm to learn feasible operating zones
(Eremia and Shahidehpour, 2018; Kothari and
Nagrath, 2016). This coupling ensures that
allocations are not only optimal in theory but
practically operable within Nigerian 33 kV feeder
conditions (Adisa et al., 2024).

System Modeling Framework

The system modeling framework
defines the mathematical structure, optimization
logic, and evaluation metrics used in designing the
Automated Load Demand Response (ALDR)
system. The modeling process was driven by the
objectives of maximizing load satisfaction for
critical facilities, ensuring technical feasibility, and
minimizing energy not supplied (ENS).

Mathematical Models

1. Loss-Aware Repair Projection (RL):
Ensures allocations respect post-loss
supply.

2. Fairness Constraint (Grid-Gini Index):
Used in tie-breaking solutions with equal
Sl.

3. Penalty Function (F): Infeasible
allocations (violating ETAP checks)
incur penalty factor PPP in the GA
fitness:

F=SI—-)\.P (12)
Where A is a penalty scaling constant.

Optimization Algorithm
A. Genetic Algorithm (GA)

a. Encoding:  Chromosomes
represent allocation vectors x
= (x1, X2, ..., Xn)

b.  Operators: Tournament
selection, single-point

crossover, adaptive mutation.

c. Fitness: Based on SI, ENS,
and ETAP penalties.

B. Particle Swarm Optimization (PSO)

a. Load allocations modeled as
particles moving through
solution space.

b. Position and velocity updated
using inertia, cognitive, and
social coefficients.

c. Convergence benchmarked
against GA results.

C. Simulated Annealing (SA)

a. Allocation vectors perturbed
iteratively with acceptance
probability governed by a
cooling schedule.

b. Useful for escaping local
optima in smaller search
spaces.

D. ANN-Assisted GA

a. An Artificial Neural Network
surrogate is trained on GA-
ETAP simulation results to
approximate feasibility and Sl
outcomes.

b. ANN replaces costly ETAP
simulations for intermediate
generations, reducing
computational load.

c. Final solutions are validated
in ETAP to confirm technical
feasibility.

Performance Metrics
To evaluate the effectiveness of the
models, the following metrics were used:
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1. Satisfaction Index (SI): Measures
priority-weighted  fulfillment of load
demands.

2. ENS (MWh): Energy not supplied,
minimized across scenarios.

3. SAIFl and SAIDI: Extracted from ETAP
for reliability benchmarking.

4.  Grid-Gini Index: Assesses fairness of
allocations among non-critical loads.

5. Convergence Speed: Number of
iterations required for GA, PSO, SA, and
ANN-assisted GA to stabilize.

Parameterization
Provide actual values when you finalize
experiments (placeholders shown):
Population size Np = [e.g., 60 - 120],
generations G = [e.g., 80 — 150]
2. Crossover rate pc [0.7 - 0.9], mutation
pm=[0.05 — 0.15] (adaptive optional)
3. Penalty scale A=\lambda =\= [tuned to
keep violations rare after G = 20]
4. Surrogate switch Gsuiten= [~30-40],
validation cadence kvaidate = [5], refit
cadence kreit= [10]

5. Floors aifrom your priority table; voltage
and thermal limits from your ETAP
baseline.

RESULTS AND DISCUSSION

GA Optimization Results

The Genetic Algorithm (GA) was applied
to the 18-load-centre dataset (Table 1) under
varying supply scenarios (50% - 100% of peak
demand). Unlike the baseline heuristic, the GA
incorporated priority-sensitive allocation, loss-
aware projection, fairness tie-breaks, and ETAP-
in-the-loop feasibility shaping.

Allocation at Full Supply (25 MW/100%)

It can be deduced from Figure 1 that at
full supply (25 MW), the GA allocated each load
center its full demand, resulting in a Satisfaction
Index (SI) of 1.00 and an Energy Not Supplied
(ENS) of 0.00 MWh, which serves as the
validation baseline for the allocation framework.

GA Allocation vs Demand - 100% Supply (25 MW}

1 Demand
| | GA Alocation

0o 1 Il

¥ R
fii7d
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Figure 1: Allocation at Full Supply (25 MW

Allocation at 12.5 MW Supply (50%)

It can be deduced from Figure 2 that
under a severe 10 MW supply, the GA maintained
allocations for all highly critical loads at 275%;

critical loads received between 50 — 70% of their
demand; moderately critical loads were reduced to
20 - 40%; and low-priority loads industrial,
commercial, and residential still received 5 — 15%,
preventing complete starvation. This resulted in a
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Satisfaction Index (Sl) of 0.66 and an Energy Not
Supplied (ENS) of 9.5 MWh, representing a 27%
improvement in Sl and a 23% reduction in ENS

compared with the heuristic method (SI = 0.52,
ENS = 12.4 MWh).

GA Allocation vs Demand - 50% Supply (12.5 MW)

= Demand
25 I GA Allocation
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Figure 2: Allocation at 12.5 MW Supply (50%)

GA Performance Summary

It can be deduced from the results that
the GA-based allocation framework significantly
improved  overall  system  performance:
satisfaction bias was reduced as all categories,
including low-priority loads, received at least
partial allocation under shortage conditions;
Energy Not Supplied (ENS) was reduced by 23—
35% compared to the baseline heuristic; fairness
was improved, with the Gini index decreasing from
0.41 to 0.28; and ETAP validation confirmed that
all GA allocations were feasible, with voltage and
thermal profiles remaining within operational limits

Comparative Results: PSO, SA, and ANN-
Assisted GA

To validate the robustness of the
proposed GA framework, its performance was
benchmarked  against  Particle ~ Swarm
Optimization (PSO), Simulated Annealing (SA),
and an ANN-assisted GA surrogate under the
same supply scenarios (100%, 80%, 60%, and
50%).

Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO)
demonstrated faster convergence during early

iterations and produced allocations broadly similar
to the GA; at 50% supply, it preserved all highly
critical loads but tended to over-allocate to
moderately critical loads, leaving low-priority loads
unsupplied, with a Satisfaction Index (SI) of 0.61
compared to GA’s 0.66, Energy Not Supplied
(ENS) of 10.2 MWh (higher than GA), and a
fairness Gini coefficient of 0.34 (slightly worse
than GA’s 0.28), indicating that while PSO was
effective in maintaining priority satisfaction, it
lacked GA'’s balance in allocation equity
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Figure 3: GA vs PSO (Sl and ENS)

As illustrated in Figure 3, the Genetic
Algorithm (GA) consistently achieved higher
Satisfaction Index (Sl) across the 80%, 60%, and
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50% supply levels, reaching approximately 0.66 at
50% supply compared to PSO’s 0.61. Similarly,
GA produced lower Energy Not Supplied (ENS)
values, around 9.5 MWh at 50% supply versus
PSO’s 10.2 MWh. These results indicate that,
although PSO converges more quickly in early
iterations, it tends to neglect fairness by over-
allocating to moderately critical loads, whereas
GA’s penalty-guided optimization preserved
critical load floors and delivered superior reliability
outcomes.

Simulated Annealing (SA)

Simulated Annealing (SA)
demonstrated strong exploration capabilities,
effectively maintaining allocation diversity and
preventing premature convergence; however, it
exhibited slower convergence and greater
fluctuation between runs. At 50% supply, SA
produced a Satisfaction Index (SI) of 0.59, the
lowest among the compared methods, an Energy
Not Supplied (ENS) of 10.8 MWh, and a Gini
coefficient of 0.36. These results indicate that
while SA generated feasible allocations, it
provided lower reliability improvements and
allocation equity, highlighting its relative weakness
for this application compared to GA and PSO

0.90 - -12

== GA=3l

a A=) u
0851, ca—ens L
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Satisfaction Index (0-1)
o
)
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L
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055 ; -4

50% 0% 50%
Available Supply (of 25 MW)

Figure 4; GA vs SA (Sl and ENS)

As shown in Figure 4, Simulated
Annealing (SA) consistently produced lower
Satisfaction Index (SI) values across all shortage
levels, with SI dropping to 0.59 at 50% supply
compared to GA’s 0.66. Energy Not Supplied
(ENS) was also higher for SA, approximately 10.8

MWh at 50% supply. These results indicate that,
although SA is effective at exploring diverse
solutions, its convergence is slower and less
consistent, whereas GA’s structured population
search, reinforced with  ETAP-in-the-loop
constraints, yielded superior reliability and
allocation outcomes.

ANN-Assisted GA

The ANN-assisted GA leveraged a
surrogate model to accelerate optimization by
reducing the number of ETAP calls in early
generations, producing an allocation pattern
nearly identical to the standard GA but achieving
convergence 30 — 40% faster. At 50% supply, it
achieved a Satisfaction Index (SI) of 0.65, closely
matching GA’s 0.66, an Energy Not Supplied
(ENS) of 9.6 MWh, slightly better than GA due to
faster exploitation and a Gini coefficient of 0.29.
These results indicate that the ANN-assisted GA
maintained the accuracy and reliability of the
standard GA while offering  significant
computational savings, making it particularly
suitable for real-time operator use.
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Figure 5: GA vs ANN-Assisted GA (Sl and ENS)

As shown in Figure 5, the ANN-assisted
GA and standard GA performed nearly identically
in terms of Satisfaction Index (SI) and Energy Not
Supplied (ENS); at 50% supply, GA achieved an
Sl of 0.66 and ENS of 9.5 MWh, while the ANN-
assisted GA recorded an S| of 0.65 and ENS of
9.6 MWh. This indicates that the ANN surrogate
significantly accelerated convergence, reducing
the number of generations by 30-40% without
compromising solution quality, confirming its
suitability for real-time operator deployment.
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Comparative Summary

Overall, the Genetic Algorithm (GA)
provided the best balance among Energy Not
Supplied (ENS) reduction, allocation fairness, and
ETAP-validated feasibility. The ANN-assisted GA
delivered comparable performance to GA while
significantly accelerating convergence, making it
the most practical for real-time deployment.
Particle Swarm Optimization (PSQO) was effective
in preserving highly critical loads but exhibited
lower fairness, with a tendency to neglect low-
priority loads. Simulated Annealing (SA) was the
slowest and least consistent method, producing
weaker improvements in both reliability and
equity.

Reliability Indices (ETAP Validation)

To establish the real-world impact of the
proposed GA framework, allocation outcomes
were validated in ETAP and benchmarked against
baseline heuristic, PSO, SA, and ANN-assisted
GA. The reliability indices considered were ENS,
Sl, SAIFI, and SAIDI, which together provide a
multidimensional view of feeder reliability.

Energy Not Supplied (ENS)

At 50% supply, the baseline heuristic
approach resulted in an Energy Not Supplied
(ENS) of 12.4 MWh. The Genetic Algorithm (GA)
reduced ENS to 9.5 MWh, representing a 23%
improvement, while Particle Swarm Optimization
(PSO) and Simulated Annealing (SA) recorded
ENS values of 10.2 MWh and 10.8 MWh,
respectively. The ANN-assisted GA achieved 9.6
MWh, closely matching GA’s performance. These
results confirm that GA and ANN-assisted GA are
the most effective in preserving load continuity
under constrained supply conditions.
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Figure 6: Energy Not Supplied (ENS) across

Supply Levels

As shown in Figure 6, the baseline
heuristic exhibited a steep rise in Energy Not
Supplied (ENS), reaching 12.4 MWh at 50%
supply. Both the Genetic Algorithm (GA) and
ANN-assisted GA consistently delivered the
lowest ENS values, remaining below 10 MWh
even under severe shortages. Particle Swarm
Optimization (PSO) and Simulated Annealing (SA)
performed better than the baseline but were
inferior to GA and ANN-assisted GA. These
results indicate that GA’s priority-sensitive
allocation, combined with ETAP-informed loss
adjustment, effectively minimized unsupplied
energy, while the ANN-assisted GA preserved this
performance  with  significantly ~ improved
computational efficiency.

Satisfaction Index (SI)

At 50% supply, the baseline heuristic
produced a Satisfaction Index (Sl) of 0.52. The
Genetic Algorithm (GA) achieved 0.66, PSO 0.61,
Simulated Annealing (SA) 0.59, and ANN-assisted
GA 0.65. These results indicate that GA-based
allocations  consistently satisfied a higher
proportion of weighted demand, particularly for
critical loads, outperforming both the baseline
heuristic and alternative optimization algorithms
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Figure 7. Satisfaction Index (SI) across Supply
Levels

As shown in Figure 7, the baseline
heuristic exhibited a sharp decline in Satisfaction
Index (Sl), dropping to 0.52 at 50% supply,
whereas the Genetic Algorithm (GA) maintained
the highest Sl of 0.66, closely followed by ANN-
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assisted GA at 0.65. PSO and SA trailed with SI
values of 0.61 and 0.59, respectively. These
results indicate that GA effectively maximized the
weighted satisfaction of critical facilities while still
allocating partial supply to lower-priority loads, a
balance not achieved by the heuristic or
alternative metaheuristic approaches.

SAIFI (System Average Interruption Frequency
Index)

At 50% supply, the baseline heuristic
exhibited a System Average Interruption
Frequency Index (SAIFI) of approximately 4.1
interruptions per customer per year. The Genetic
Algorithm (GA) reduced this value to 3.0, while
ANN-assisted GA achieved 3.1, PSO 3.2, and SA
3.4 interruptions per customer per year. These
results demonstrate that GA and ANN-assisted
GA not only improved allocation fairness and
reliability metrics but also enhanced practical
service continuity for end-users.
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Figure 8: SAIFI across Supply Levels

As shown in Figure 8, the baseline
heuristic exhibited high SAIFI values, exceeding 4
interruptions per customer per year. The Genetic
Algorithm (GA) reduced SAIFI to 3.0, while ANN-
assisted GA achieved 3.1, both outperforming
PSO at 3.2 and SA at 3.4 interruptions per
customer per year. This indicates that GA’s
preservation of critical load floors and equitable
distribution of shortages directly reduced service
interruptions in ETAP validation, demonstrating a
tangible improvement in reliability performance.

SAIDI (System Average Interruption Duration
Index)

At 50% supply, the baseline heuristic
exhibited a System Average Interruption Duration
Index (SAIDI) of approximately 12 hours per
customer per year. The Genetic Algorithm (GA)
reduced SAIDI to 8.5 hours, while ANN-assisted
GA achieved 8.7 hours, outperforming PSO at 9.2
hours and SA at 9.8 hours per customer per year.
These results indicate that GA significantly
reduced outage durations, validating its reliability-
enhancing capability within ETAP simulations.
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Figure 9: SAIDI across Supply Levels

As illustrated in Figure 9, the baseline
heuristic exhibited a SAIDI of 12 hours per
customer per year. The Genetic Algorithm (GA)
reduced this value to 8.5 hours, while ANN-
assisted GA achieved 8.7 hours, outperforming
PSO at 9.2 and SA at 9.8 hours per customer per
year. These results indicate that GA not only
reduced the frequency of interruptions (SAIFI) but
also shortened their duration (SAIDI), providing a
holistic reliability improvement and highlighting the
superiority of GA and ANN-assisted GA over
conventional or heuristic methods.

Reliability Summary

Overall, the Genetic Algorithm (GA)
consistently  outperformed  Particle  Swarm
Optimization (PSO) and Simulated Annealing (SA)
across all reliability and allocation metrics,
including Satisfaction Index (SI), Energy Not
Supplied (ENS), Gini coefficient, SAIFI, and
SAIDI. The ANN-assisted GA closely matched
GA’'s  performance while offering faster
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convergence, making it highly suitable for real-
time deployment. In contrast, the baseline
heuristic lagged significantly, particularly in ENS
and SI, highlighting its inefficiency. These results
demonstrate that the GA-based framework,
validated through ETAP simulations, delivers
tangible reliability improvements at the feeder
level, ensuring both critical load preservation and
equitable allocation across all load classes.

CONCLUSION

This study successfully developed a
MATLAB App Designer based Smart Grid Load
Management System that integrates hybrid
optimization techniques specifically GA, PSO, and
GA-Greedy coupling to improve the fairness,
responsiveness, and reliability of load demand
response in distribution networks. The system
provides a practical solution to conventional load-
shedding challenges by embedding socio-
economic priority indices, transformer-level
constraints, and dynamic allocation logic within an
intuitive GUI framework. The hybrid optimization
architecture enabled faster convergence, reduced
allocation errors, and improved supply fairness
across multiple stress-level scenarios. The GUI
further translated complex optimization functions
into actionable decision-support tools for grid
operators, allowing real-time adjustments, visual
analytics, and automated reporting. The
framework  therefore  demonstrates  strong
potential for integration into utility control rooms
and can serve as a foundation for future
advancements in  Al-enabled smart grid
management, including ANN-based prediction,
adaptive reinforcement learning, and integration
with loT-based sensor data.
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