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ABSTRACT 
The increasing mismatch between electricity demand and available 
supply in modern distribution networks has intensified the need for 
intelligent and automated load management strategies. This study 
presents the development of a MATLAB App Designer-based Smart 
Grid Load Management System that integrates hybrid optimization 
techniques to ensure efficient, fair, and priority-sensitive power 
allocation across multiple load centers. The system combines Genetic 
Algorithm (GA) optimization with auxiliary heuristic and rule-based 
repair operators to handle conflicting constraints, maintain critical-load 
floors, and minimize supply and demand imbalance. A graphical user 
interface (GUI) was developed to provide operators with real-time 
capabilities, including adjustable priority indices, algorithm selection 
(GA, PSO, hybrid GA-greedy), demand specification, and automated 
report generation. The framework was validated using an 18-load-
center dataset representing a typical urban 33 kV distribution feeder, 
with total demand exceeding available supply under several stress 
scenarios. Results show that the hybrid optimization approach 
achieved faster convergence, improved load satisfaction levels, and 
superior critical-load preservation compared with standalone GA or 
conventional load-shedding methods. The system’s performance was 
further verified through ETAP-based feasibility checks, confirming its 
operational viability for real-time deployment. Overall, the developed 
platform provides a scalable, operator-friendly, and optimization-
driven solution for modern smart grid load management.  

 
INTRODUCTION 
  Electric power distribution networks in 
developing economies continue to operate under 
severe structural and operational stress. Chronic 
generation deficits, aging distribution 
infrastructure, and limited automation frequently 
force utilities to resort to manual load shedding as 
the primary mechanism for balancing supply and 
demand [1-2]. These traditional practices are often 
subjective, non-transparent, and insensitive to the 
operational priorities of critical facilities such as 
hospitals, water treatment plants, and security 
installations. As peak demand continues to 
escalate while supply growth remains stagnant, 
the absence of intelligent, data-driven load 

allocation frameworks results in inequitable 
distribution of available power, inefficient 
utilization of constrained resources, and increased 
risk of feeder overload and system instability. 
  The evolution of smart grid concepts 
supported by advances in computational 
intelligence offers significant potential for 
addressing these long-standing challenges. 
Optimization techniques such as Genetic 
Algorithms (GA) and Particle Swarm Optimization 
(PSO) have been widely investigated for load 
allocation and demand-side management due to 
their ability to handle nonlinear, multi-objective, 
and constrained optimization landscapes. 
However, most existing implementations remain 
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confined to offline simulation environments and 
lack mechanisms to reconcile optimization outputs 
with real-world operational constraints [3]. Critical-
load floors, fairness tie-breaking rules, and system 
feasibility checks are often not embedded within 
the optimization logic. Furthermore, the absence 
of operator-oriented interfaces prevents practical 
adoption, leaving a substantial gap between 
academic research outcomes and deployment-
ready tools for utility control rooms. 
  In response to these limitations, this 
study proposes a MATLAB App Designer-based 
Smart Grid Load Management System that 
integrates hybrid optimization techniques tailored 
for constrained distribution networks. The 
developed framework combines the global search 
capability of GA with rule-based heuristics and 
greedy repair operators to enforce allocation 
feasibility, preserve high-priority loads, and 
improve convergence speed. A dedicated 
graphical user interface (GUI) enables operators 
to configure available supply levels, adjust load 
priority indices, select optimization modes, and 
visualize allocation outcomes through bar charts, 
tables, and automatically generated reports. The 
optimization engine incorporates an enhanced 
fitness function that embeds priority weighting, 
fairness constraints, load satisfaction ratios, and 
penalty terms for infeasibility or supply demand 
mismatch, making the system suitable for real-
time decision support. 
  To evaluate performance under realistic 
operating conditions, the system is tested using 
data from an 18-load-center 33 kV feeder 
subjected to multiple constrained-supply 
scenarios. Comparative assessments are 
conducted against conventional load shedding 
procedures and standalone GA optimization to 
quantify improvements in fairness, critical-load 
preservation, and computational efficiency. In 
addition, all optimized allocations undergo ETAP 
load flow simulation to verify compliance with 
voltage limits, feeder loading margins, and 
transformer capacity constraints. The validation 
results demonstrate that the proposed hybrid 
optimization framework not only improves 
allocation equity and operational robustness but 

also significantly enhances usability for 
distribution system operators. 
  This work contributes a technically 
rigorous yet operationally deployable platform for 
automated load management in distribution 
networks. By integrating hybrid evolutionary 
optimization into a GUI-driven tool, the study 
bridges the gap between theoretical smart grid 
models and field-ready decision-support systems. 
The software’s modular design makes it adaptable 
to other feeders and utilities, and it establishes a 
foundation for future enhancements including 
SCADA integration, real-time metering interfaces, 
and cloud-based demand response applications. 
  
REVIEW OF FUNDAMENTAL CONCEPT 
  In this section, some fundamental 
concept that are related to this research are 
discussed in subsequent subsection. 
 
Smart Grid Load Management and Demand 
Response 
  Smart grid load management has 
evolved as a key strategy for improving reliability, 
reducing system stress, and ensuring equitable 
distribution of limited supply. Traditional load 
shedding approaches are typically rule-based and 
rely on subjective operator judgment, leading to 
suboptimal and often unfair allocation of power 
during supply deficits [4]. Modern demand 
response mechanisms incorporate automation, 
real-time monitoring, and optimization, enabling 
distribution utilities to adjust loads dynamically in 
response to fluctuating supply conditions [5-6]. 
Recent studies emphasize the importance of 
priority-sensitive allocation frameworks that 
recognize the socio-economic criticality of 
different load categories, particularly in developing 
nations where essential services depend on stable 
power [7]. However, implementation gaps persist 
between algorithmic models and field-ready tools 
capable of real-time deployment. 
 
Optimization Techniques for Load Allocation 
  Optimization techniques especially 
heuristic and population-based algorithms have 
been widely applied to solve nonlinear, multi-
constraint load allocation problems. Genetic 
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Algorithms (GA) are among the most widely 
adopted due to their robustness, global search 
capability, and adaptability to multiple objective 
functions [8]. Despite these strengths, standalone 
GA methods often exhibit slow convergence and 
may produce infeasible solutions when strict 
operational constraints are imposed. Particle 
Swarm Optimization (PSO) has also been 
explored for load management, offering faster 
convergence but sometimes suffering from 
premature stagnation in local optima [9-10]. Other 
techniques such as Simulated Annealing (SA), Ant 
Colony Optimization (ACO), and hybrid 
evolutionary methods have been applied with 
various levels of success [11]. Hybrid optimization 
frameworks combining GA with greedy heuristics, 
fuzzy logic, or constraint repair mechanisms have 
shown promise in improving solution feasibility, 
especially in problems with priority-based or 
minimum-supply constraints [12-13]. These hybrid 
approaches tend to outperform single algorithms 
by leveraging global exploration and local 
refinement simultaneously. 
 
Fitness Function 
  In Genetic Algorithm (GA) optimization, 
a fitness function is a mathematical criterion used 
to evaluate the quality or suitability of candidate 
solutions with respect to the objectives of the 
problem [14]. Within smart grid applications, 
particularly in Automated Load Demand 
Response (ALDR) frameworks, the fitness 
function serves as the key mechanism guiding the 
evolutionary search towards solutions that 
balance technical efficiency, socio-economic 
fairness, and operational feasibility. For the GA-
based ALDR model developed in this study, the 
fitness function integrates multiple performance 
objectives, including: 

1. Minimization of Energy Not Supplied 
(ENS): Ensuring that the difference 
between total demand and allocated 
power is minimized, thereby reducing 
service interruptions across the feeder 
[15] 

2. Priority Satisfaction: Incorporating the 
Priority Index (PI) of each load centre, 
the fitness function weights allocations 

to favor critical loads such as hospitals, 
waterworks, and communication hubs 
while guaranteeing minimum supply 
through criticality floors [16]. 

3. Fairness Enhancement: Using metrics 
such as the grid-Gini coefficient, the 
function penalizes solutions that 
excessively favor high-priority loads at 
the expense of low-priority but socially 
relevant loads, ensuring a more 
equitable distribution [17]. 

 
  Mathematically, the fitness function can 
be represented as a weighted combination of 
these objectives: 
 
F(x) = α SI(x) − β ENS(x) − γ G(x)           (1) 
 
Where: SI(x) = Priority-weighted Satisfaction 
Index, ENS(x) = Energy Not Supplied, G(x) = Grid-
Gini coefficient representing allocation fairness. α, 
β, γ = weighting factors to balance competing 
objectives 
 
  This multi-objective fitness formulation 
ensures that GA candidates are evaluated not 
only for technical performance but also for socio-
economic relevance and equitable allocation. 
Furthermore, by integrating ETAP-in-the-loop 
feasibility checks, the fitness function implicitly 
penalizes solutions that violate voltage limits, line 
loading, or radial topology constraints, thereby 
coupling mathematical optimization with real-
world operability [18]. 
 
Reliability and Performance Indices 

A. System Average Interruption 
Frequency Index (SAIFI) 

 The SAIFI measures the average number of 
sustained interruptions a consumer experiences 
over a given period, typically a year. It is 
expressed as: 
 

SAIFI =  
∑ Nί

NT
   (2) 

 
where Ni is the total number of customer 
interruptions and NT is the total number of 
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connected customers (IEEE Std. 1366-2012). 
SAIFI provides insight into how frequently outages 
occur and is widely used to benchmark utility 
performance. In Nigeria, SAIFI values remain 
high, reflecting frequent feeder interruptions that 
affect consumer confidence and economic 
activities [19].  
 
System Average Interruption Duration Index 
(SAIDI) 
  The SAIDI measures the average total 
duration of sustained interruptions experienced by 
a customer in a year. It is given as: 

  

SAIDI =  
∑  Uί .Nί

NT
    (3) 

 
where Ui represents the customer interruption 
durations (in hours), and NT is the total number of 
customers served. SAIDI captures the severity of 
outages from a temporal perspective. High SAIDI 
values indicate longer service restoration times 
and greater customer inconvenience. In reliability-
oriented [20] optimization frameworks, reducing 
SAIDI is often a critical goal alongside minimizing 
ENS. 
 

B. Satisfaction Index (SI)  
  Beyond traditional reliability indices, the 
SI has been increasingly used to measure how 
well power allocation aligns with customer 
expectations and socio-economic priorities. SI is 
typically expressed as a percentage of demand 
satisfied relative to total demand: 
 

SI =  
 1

N
 ∑

Aί 

πί
  

ŋ
ί=1 𝑥 100     (4) 

  
  In this study, SI is closely related to the 
SI, which evaluates whether high-priority loads 
(e.g., hospitals, water treatment plants) are 
adequately served even under constrained supply 
conditions. Other related performance indicators 
include Loss of Load Probability (LOLP) and Loss 
of Load Expectation (LOLE), which provide 
probabilistic measures of system adequacy [21] 
Together, these indices provide a comprehensive 
assessment of system performance from both 
technical and consumer perspectives. 

Genetic Algorithm (GA) Fundamentals 
  The Genetic Algorithm (GA) is a 
metaheuristic inspired by the principles of natural 
selection and genetics, introduced by Holland in 
the 1970s [22]. A GA works by evolving a 
population of potential solutions (chromosomes) 
toward better solutions through iterative 
processes. 

a. Chromosome Encoding: Each 
chromosome represents a candidate 
solution to the optimization problem. In 
power systems, this may include binary, 
integer, or real-number encodings of 
load allocation decisions, feeder 
switching states, or generator 
schedules. For load allocation in weak 
grids, each gene within a chromosome 
may represent the power assigned to a 
load centre, subject to feeder and 
supply constraints. 

b. Population: A set of chromosomes 
forms a population, which evolves 
across generations. The diversity of the 
population is crucial for exploring the 
solution space effectively and avoiding 
premature convergence. 

c. Fitness Function: The fitness function 
evaluates the quality of each 
chromosome. It is problem-specific and 
typically seeks to maximize priority-
based satisfaction of critical loads while 
minimizing ENS, SAIFI, and SAIDI. 
Mathematically, for this study, the 
fitness function can be expressed as: 
 

F (x)

=  w1 . 𝑆𝐼 + w2. (
 1

ENS 
)

+  w3 .  (
 1

SAIDI + SAIFI 
)             (5) 

 
where w1, w2, w3  are weighting factors reflecting 
the relative importance of satisfaction index, 
energy reliability, and interruption minimization.  
 
Priority-Based Allocation Models 
  Priority-based load allocation models 
assign weights to consumer categories based on 
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criticality, socio-economic impact, or operational 
importance. Priority indices have been used to 
guarantee minimum power levels for hospitals, 
waterworks, and high-value commercial clusters 
[23]. Some models integrate priority functions 
directly into objective formulations, while others 
apply hierarchical constraints that cannot be 
violated [24]. However, existing works often lack 
mechanisms to balance priority with fairness. Most 
frameworks also fail to incorporate tie-breaking 
logic or dynamic adjustments when two or more 
loads share identical priority levels. This creates 
ambiguity in practical implementation. 
 
GUI-Based Smart Grid Decision Support Tools 
  Graphical User Interfaces (GUIs) play a 
crucial role in bridging the gap between complex 
optimization models and real-world operators. 
MATLAB App Designer has emerged as a robust 
environment for building interactive engineering 
applications, offering integrated visualization, 
optimization toolboxes, and file export features 
[25]. Despite these advantages, few studies have 
utilized MATLAB App Designer to develop real-
time load management tools that integrate 
optimization, reporting, and operator decision-
making. Existing GUI-based solutions tend to 
focus on educational purposes or simplified load 
flow visualization rather than end-to-end 
operational automation. 
 
ETAP-Assisted Power System Validation 
  ETAP (Electrical Transient Analyzer 
Program) is widely used for load flow, short-circuit, 
and reliability evaluation in power systems [26]. 
Several research studies recommend validating 
optimization-based allocation models using ETAP 
to ensure operational feasibility, equipment 
protection, and adherence to voltage limits [27]. 
Yet, few works integrate ETAP validation as part 
of an iterative optimization–verification cycle. Most 
studies treat ETAP as a post-processing tool 
rather than an operational checkpoint. 
 
MATERIAL AND METHODOLOGY 
Materials and Equipment 

  The materials used include a laptop 
personal computer of appropriate configuration 
with MATLAB and ETAP software. 
 
Experimental Procedure 
  The primary data for this research for 
the 33 kV feeders were sourced from Abuja 
Electricity Distribution Company (AEDC). The 
categories of data obtained are:  

a. Load Centre Characteristics: This 
contains the facility names, load ratings 
(MW), transformer capacities, and feeder 
interconnection points. 

b. Priority Indices: Expert-assigned 
criticality weights for each load centre, 
based on socio-economic importance 
(e.g., hospitals, water works, higher 
institutions, and commercial clusters). 

c. Historical Reliability Records: System 
Average Interruption Frequency Index 
(SAIFI), System Average Interruption 
Duration Index (SAIDI), and Energy Not 
Supplied (ENS) values, serving as 
baseline performance metrics. 

d. Operational Records: Peak demand logs, 
transformer outage history, and AEDC 
supply schedules, used to characterize 
variability. 

 
  Also, synthetic Data was generated in 
MATLAB to capture edge-case conditions beyond 
the historical record, and the scenarios include: 

a. Severe Shortfall Scenarios: Available 
power set to 30 – 50% of peak demand 
to test allocation under extreme 
shortages. 

b. Contingency Scenarios: Outages of 
specific transformers or feeder sections, 
used to simulate radial constraints. 

c. Overload Stress Tests: Demand surges 
above historical peaks (10–20%) to 
examine GA response in non-standard 
operating envelopes. 

 
  Table 1 shows the load centers with the 
priority assignment and their classifications in 
descending order. 
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Table 1: Load Centers, Transformer Ratings, Load Demand, and Priority Classification 

Load Centre Transformer Rating 
(MVA) 

Demand 
(MW) 

Priority 
Index 

Classification 

FMC Hospital 2.50 1.50 0.99 Highly Critical 
Federal University Lokoja 1.50 1.00 0.96 Highly Critical 
Lokoja Water Works 2.00 1.20 0.93 Highly Critical 
Telecom Masts 3.15 2.00 0.89 Critical 
Fire Service Station 2.00 1.40 0.86 Critical 
Force Headquarters 2.00 1.20 0.83 Critical 
Army Barracks 1.50 1.00 0.81 Critical 
Power Holding Office 0.75 0.50 0.78 Critical 
Government House 2.50 1.50 0.74 Moderately Critical 
CBN Office 3.15 2.00 0.70 Moderately Critical 
Banks Area 2.00 1.20 0.68 Moderately Critical 
Mega Transport Terminal 1.25 0.80 0.66 Moderately Critical 
Filling Station Area 0.63 0.40 0.63 Moderately Critical 
Court Line 3.15 2.00 0.60 Moderately Critical 
Industrial Area 4.00 2.50 0.50 Low Priority 
Commercial Area 4.00 2.80 0.45 Low Priority 
NYSC Camp 0.75 0.50 0.40 Low Priority 
Zone 8 Residential Area 2.50 1.50 0.35 Low Priority 
Totals 39.33 25.00 

  

(Source: AEDC, Lokoja Zonal Records Unit) 
 
GA Problem Formulation and Model Design 
  A 33 kV distribution feeder with N load 
centres is modeled, each represented by a 
demand Di and allocated power xi. The total 
available supply is S. Each load is assigned a 
criticality floor αi, Di, where αi ∈ [0,1] specifies the 
minimum mandatory allocation fraction for 
essential facilities such as hospitals, waterworks, 
or communication hubs etc. This study integrates 
several novel optimization features into the GA-
based ALDR framework, including priority-
anchored allocation, fairness shaping, and loss-
aware feasibility coupling with ETAP.  
 
Objective Functions 
  The system’s dual objective is to 
maximize the priority-weighted Satisfaction Index 
(SI) and minimize Energy Not Supplied (ENS), 
both key indicators of power system performance 
(Billinton and Allan, 1996; Al-Saedi et al., 2017). 
  The dual objective is expressed as: 

max 𝑆𝐼 =
∑ 𝑤𝑖.min(𝑥𝑖,𝐷𝑖)𝑁

𝑖=1

∑ 𝑤𝑖.𝐷𝑖
𝑁
𝑖=1

               (6) 

      

 min 𝐸𝑁𝑆 = ∑ (𝐷𝑖 − 𝑥𝑖)
+𝑁

𝑖=1            (7) 
      
where wi is the normalized priority index, Di is the 
demand, and xi is the power allocation to load i. 
The Satisfaction Index ensures that high-priority 
loads are favored while maintaining system-wide 
allocation balance. These two indicators are 
widely used in power system performance 
evaluation (Kothari and Nagrath, 2016; Deep and 
Das, 2014; Kennedy and Eberhart, 2004).  
 
Power Balance Constraint 
  Transmission and distribution losses 
are explicitly accounted for using ETAP’s active 
power loss estimate L^(x). The total allocation 
must not exceed the net available power:  
 

∑ 𝑥𝑖 ≤ 𝑆 − 𝐿̂(𝑥)𝑁
𝑖=1             (8) 

 
  This loss-corrected projection ensures 
system consistency between mathematical 
optimization and physical feeder constraints, 
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distinguishing the model from loss-agnostic GA 
models reported in earlier studies (Eremia and 
Shahidehpour, 2018; Adisa et al., 2024; Mahmoud 
et al., 2020).  
 
Loss-Aware Repair/Projection (RL) 
  To ensure energy consistency after 
accounting for feeder losses, allocations are 
adjusted via a loss-corrected projection: 
 

𝑥𝑖
′ =

𝑆−𝐿̂(𝑥)

∑ 𝑥𝑗𝑗
. 𝑥𝑖             (9) 

 
where wi is the normalized socio-economic priority 
index, Di the demand, and xi the allocated power. 
This objective formulation follows the multi-
objective optimization framework in smart grids, 
which balances technical efficiency and socio-
economic fairness (Deb, 2019; Liu and Singh, 
2024; Dasgupta and Michalewicz, 2018). This 
correction ensures that the total distributed power 
respects actual available capacity after accounting 
for ETAP-estimated losses, distinguishing the 
framework from loss-agnostic optimization 
models. 
 
Embedding Socio-Economic Priority Indices 
  Each load i is represented by demand Di 

and a criticality floor αi, Di, where αi∈[0,1] denotes 
the minimum mandatory allocation fraction for 
critical facilities (e.g., hospitals, water works). The 
GA fitness incorporates a priority-weighted 
Satisfaction Index (SI) defined as figure 3.1: 
 
Critical Floors for Essential Services 
  To operationalize socio-economic 
prioritization, each load centre is assigned a 
priority weight wi derived from normalized socio-
economic indices representing criticality, service 
relevance, and load type. Critical loads (e.g., 
hospitals, waterworks, communication centres) 
are assigned minimum allocation guarantees 
using the constraint: 
 
xi ≥ αi, Di ∀I ∈ C            (10) 
 
where C denotes the subset of critical load centers 
and αi defines the minimum allowable supply 

fraction to prevent complete outage in essential 
services. The GA fitness incorporates these 
constraints and priority weights to guide the 
population toward balanced, high-priority 
allocations (Deep and Das, 2014; Deb, 2019; 
Kennedy and Eberhart, 2004). This hybrid 
strategy improves grid resilience during severe 
shortages, consistent with global smart grid 
reliability trends (Wang et al., 2022; Eremia and 
Shahidehpour, 2018). 
 
Fairness Tie-Break via Grid-Gini Index 

To prevent repeated starvation of low-
priority but socially relevant loads, tie-breaking 
among solutions of similar SI is guided by a 
grid-Gini index: 

 

G =
∑ ∑ |𝑥𝑖.𝑥𝑗|𝑁

𝑗=1
𝑁
𝑖=1

2𝑁2.𝑥̅
           (11) 

   
where 𝑥̅ is the mean allocation. Lower Gini values 
indicate more equitable sharing, which improves 
fairness without undermining critical load 
satisfaction. A lower Gini value indicates a more 
equitable load distribution, complementing critical-
load guarantees without compromising fairness 
(Deb, 2019; Billinton and Allan, 1996) 
 
Implementation and Benchmarking 
  The GA is implemented using 
MATLAB’s Global Optimization Toolbox, using an 
adaptive crossover–mutation strategy to maintain 
diversity and promote convergence. 
 
Benchmark Algorithms 
  To assess comparative performance, 
the GA is benchmarked against: 

1. Particle Swarm Optimization (PSO) 
2. Simulated Annealing (SA) 
3. ANN-Assisted GA (Hybrid ANN–GA) 

 
Evaluation Metrics 
  The following metrics evaluate 
algorithmic convergence, operational feasibility, 
and fairness: 

1. Convergence rate (iterations to stability) 
2. Average Satisfaction Index (SI) 
3. Energy Not Supplied (ENS) 
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4. Allocation fairness (Gini coefficient) 
 
  These metrics quantify improvements 
relative to heuristic and metaheuristic baselines. 
 
ETAP-in-the-Loop Feasibility Shaper 
  Conventional GA solutions are often 
evaluated only on mathematical constraints. In 
this design, GA candidates are subjected to ETAP 
feeder simulations, which check for: 

a. Voltage Limits: 0.95 ≤ V ≤ 1.05 p.u. 
b. Thermal loading: ≤ 100% of rated 

capacity for lines and transformers 
c. Feeder topology: Radial structure 

preservation 
d. Loss feasibility: Active loss ≤ 0.002 MW 

  
  Violations trigger adaptive penalties 
within the GA fitness function, enabling the 
algorithm to learn feasible operating zones 
(Eremia and Shahidehpour, 2018; Kothari and 
Nagrath, 2016). This coupling ensures that 
allocations are not only optimal in theory but 
practically operable within Nigerian 33 kV feeder 
conditions (Adisa et al., 2024). 
 
System Modeling Framework 
  The system modeling framework 
defines the mathematical structure, optimization 
logic, and evaluation metrics used in designing the 
Automated Load Demand Response (ALDR) 
system. The modeling process was driven by the 
objectives of maximizing load satisfaction for 
critical facilities, ensuring technical feasibility, and 
minimizing energy not supplied (ENS). 
 
Mathematical Models 

1. Loss-Aware Repair Projection (RL): 
Ensures allocations respect post-loss 
supply. 

2. Fairness Constraint (Grid-Gini Index): 
Used in tie-breaking solutions with equal 
SI. 

3. Penalty Function (F): Infeasible 
allocations (violating ETAP checks) 
incur penalty factor PPP in the GA 
fitness: 
 

 𝐹 = 𝑆𝐼 − λ . P   (12) 
Where λ is a penalty scaling constant. 
 
Optimization Algorithm 

A. Genetic Algorithm (GA) 
a. Encoding: Chromosomes 

represent allocation vectors x 
= (x1, x2, …, xN) 

b. Operators: Tournament 
selection, single-point 
crossover, adaptive mutation. 

c. Fitness: Based on SI, ENS, 
and ETAP penalties. 

B. Particle Swarm Optimization (PSO) 
a. Load allocations modeled as 

particles moving through 
solution space. 

b. Position and velocity updated 
using inertia, cognitive, and 
social coefficients. 

c. Convergence benchmarked 
against GA results. 

C. Simulated Annealing (SA) 
a. Allocation vectors perturbed 

iteratively with acceptance 
probability governed by a 
cooling schedule. 

b. Useful for escaping local 
optima in smaller search 
spaces. 

D. ANN-Assisted GA 
a. An Artificial Neural Network 

surrogate is trained on GA–
ETAP simulation results to 
approximate feasibility and SI 
outcomes. 

b. ANN replaces costly ETAP 
simulations for intermediate 
generations, reducing 
computational load. 

c. Final solutions are validated 
in ETAP to confirm technical 
feasibility. 

 
Performance Metrics 
  To evaluate the effectiveness of the 
models, the following metrics were used: 
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1. Satisfaction Index (SI): Measures 
priority-weighted fulfillment of load 
demands. 

2. ENS (MWh): Energy not supplied, 
minimized across scenarios. 

3. SAIFI and SAIDI: Extracted from ETAP 
for reliability benchmarking. 

4. Grid-Gini Index: Assesses fairness of 
allocations among non-critical loads. 

5. Convergence Speed: Number of 
iterations required for GA, PSO, SA, and 
ANN-assisted GA to stabilize. 

 
Parameterization  
  Provide actual values when you finalize 
experiments (placeholders shown): 

1. Population size Np = [e.g., 60 – 120], 
generations G = [e.g., 80 – 150] 

2. Crossover rate pc [0.7 – 0.9], mutation 
pm= [0.05 – 0.15] (adaptive optional) 

3. Penalty scale λ=\lambda =λ= [tuned to 
keep violations rare after G ≈ 20] 

4. Surrogate switch Gswitch= [~30–40], 
validation cadence kvalidate = [5], refit 
cadence krefit = [10] 

5. Floors αi from your priority table; voltage 
and thermal limits from your ETAP 
baseline. 

 
RESULTS AND DISCUSSION 
 
GA Optimization Results 
  The Genetic Algorithm (GA) was applied 
to the 18-load-centre dataset (Table 1) under 
varying supply scenarios (50% - 100% of peak 
demand). Unlike the baseline heuristic, the GA 
incorporated priority-sensitive allocation, loss-
aware projection, fairness tie-breaks, and ETAP-
in-the-loop feasibility shaping. 
 
Allocation at Full Supply (25 MW/100%) 
  It can be deduced from Figure 1 that at 
full supply (25 MW), the GA allocated each load 
center its full demand, resulting in a Satisfaction 
Index (SI) of 1.00 and an Energy Not Supplied 
(ENS) of 0.00 MWh, which serves as the 
validation baseline for the allocation framework. 

 
Figure 1: Allocation at Full Supply (25 MW 
 
Allocation at 12.5 MW Supply (50%) 
  It can be deduced from Figure 2 that 
under a severe 10 MW supply, the GA maintained 
allocations for all highly critical loads at ≥75%; 

critical loads received between 50 – 70% of their 
demand; moderately critical loads were reduced to 
20 – 40%; and low-priority loads industrial, 
commercial, and residential still received 5 – 15%, 
preventing complete starvation. This resulted in a 
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Satisfaction Index (SI) of 0.66 and an Energy Not 
Supplied (ENS) of 9.5 MWh, representing a 27% 
improvement in SI and a 23% reduction in ENS 

compared with the heuristic method (SI = 0.52, 
ENS = 12.4 MWh). 

 
Figure 2: Allocation at 12.5 MW Supply (50%) 
 
GA Performance Summary 
  It can be deduced from the results that 
the GA-based allocation framework significantly 
improved overall system performance: 
satisfaction bias was reduced as all categories, 
including low-priority loads, received at least 
partial allocation under shortage conditions; 
Energy Not Supplied (ENS) was reduced by 23–
35% compared to the baseline heuristic; fairness 
was improved, with the Gini index decreasing from 
0.41 to 0.28; and ETAP validation confirmed that 
all GA allocations were feasible, with voltage and 
thermal profiles remaining within operational limits 
 
Comparative Results: PSO, SA, and ANN-
Assisted GA 
  To validate the robustness of the 
proposed GA framework, its performance was 
benchmarked against Particle Swarm 
Optimization (PSO), Simulated Annealing (SA), 
and an ANN-assisted GA surrogate under the 
same supply scenarios (100%, 80%, 60%, and 
50%). 
 
Particle Swarm Optimization (PSO) 
  Particle Swarm Optimization (PSO) 
demonstrated faster convergence during early 

iterations and produced allocations broadly similar 
to the GA; at 50% supply, it preserved all highly 
critical loads but tended to over-allocate to 
moderately critical loads, leaving low-priority loads 
unsupplied, with a Satisfaction Index (SI) of 0.61 
compared to GA’s 0.66, Energy Not Supplied 
(ENS) of 10.2 MWh (higher than GA), and a 
fairness Gini coefficient of 0.34 (slightly worse 
than GA’s 0.28), indicating that while PSO was 
effective in maintaining priority satisfaction, it 
lacked GA’s balance in allocation equity 

 
Figure 3: GA vs PSO (SI and ENS) 
 
  As illustrated in Figure 3, the Genetic 
Algorithm (GA) consistently achieved higher 
Satisfaction Index (SI) across the 80%, 60%, and 
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50% supply levels, reaching approximately 0.66 at 
50% supply compared to PSO’s 0.61. Similarly, 
GA produced lower Energy Not Supplied (ENS) 
values, around 9.5 MWh at 50% supply versus 
PSO’s 10.2 MWh. These results indicate that, 
although PSO converges more quickly in early 
iterations, it tends to neglect fairness by over-
allocating to moderately critical loads, whereas 
GA’s penalty-guided optimization preserved 
critical load floors and delivered superior reliability 
outcomes. 
 
Simulated Annealing (SA) 
  Simulated Annealing (SA) 
demonstrated strong exploration capabilities, 
effectively maintaining allocation diversity and 
preventing premature convergence; however, it 
exhibited slower convergence and greater 
fluctuation between runs. At 50% supply, SA 
produced a Satisfaction Index (SI) of 0.59, the 
lowest among the compared methods, an Energy 
Not Supplied (ENS) of 10.8 MWh, and a Gini 
coefficient of 0.36. These results indicate that 
while SA generated feasible allocations, it 
provided lower reliability improvements and 
allocation equity, highlighting its relative weakness 
for this application compared to GA and PSO 

 
Figure 4: GA vs SA (SI and ENS) 
 
  As shown in Figure 4, Simulated 
Annealing (SA) consistently produced lower 
Satisfaction Index (SI) values across all shortage 
levels, with SI dropping to 0.59 at 50% supply 
compared to GA’s 0.66. Energy Not Supplied 
(ENS) was also higher for SA, approximately 10.8 

MWh at 50% supply. These results indicate that, 
although SA is effective at exploring diverse 
solutions, its convergence is slower and less 
consistent, whereas GA’s structured population 
search, reinforced with ETAP-in-the-loop 
constraints, yielded superior reliability and 
allocation outcomes. 
 
ANN-Assisted GA 
  The ANN-assisted GA leveraged a 
surrogate model to accelerate optimization by 
reducing the number of ETAP calls in early 
generations, producing an allocation pattern 
nearly identical to the standard GA but achieving 
convergence 30 – 40% faster. At 50% supply, it 
achieved a Satisfaction Index (SI) of 0.65, closely 
matching GA’s 0.66, an Energy Not Supplied 
(ENS) of 9.6 MWh, slightly better than GA due to 
faster exploitation and a Gini coefficient of 0.29. 
These results indicate that the ANN-assisted GA 
maintained the accuracy and reliability of the 
standard GA while offering significant 
computational savings, making it particularly 
suitable for real-time operator use. 

 
Figure 5: GA vs ANN-Assisted GA (SI and ENS) 
 
  As shown in Figure 5, the ANN-assisted 
GA and standard GA performed nearly identically 
in terms of Satisfaction Index (SI) and Energy Not 
Supplied (ENS); at 50% supply, GA achieved an 
SI of 0.66 and ENS of 9.5 MWh, while the ANN-
assisted GA recorded an SI of 0.65 and ENS of 
9.6 MWh. This indicates that the ANN surrogate 
significantly accelerated convergence, reducing 
the number of generations by 30–40% without 
compromising solution quality, confirming its 
suitability for real-time operator deployment. 
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Comparative Summary 
  Overall, the Genetic Algorithm (GA) 
provided the best balance among Energy Not 
Supplied (ENS) reduction, allocation fairness, and 
ETAP-validated feasibility. The ANN-assisted GA 
delivered comparable performance to GA while 
significantly accelerating convergence, making it 
the most practical for real-time deployment. 
Particle Swarm Optimization (PSO) was effective 
in preserving highly critical loads but exhibited 
lower fairness, with a tendency to neglect low-
priority loads. Simulated Annealing (SA) was the 
slowest and least consistent method, producing 
weaker improvements in both reliability and 
equity. 
 
Reliability Indices (ETAP Validation) 
  To establish the real-world impact of the 
proposed GA framework, allocation outcomes 
were validated in ETAP and benchmarked against 
baseline heuristic, PSO, SA, and ANN-assisted 
GA. The reliability indices considered were ENS, 
SI, SAIFI, and SAIDI, which together provide a 
multidimensional view of feeder reliability. 
 
Energy Not Supplied (ENS) 
  At 50% supply, the baseline heuristic 
approach resulted in an Energy Not Supplied 
(ENS) of 12.4 MWh. The Genetic Algorithm (GA) 
reduced ENS to 9.5 MWh, representing a 23% 
improvement, while Particle Swarm Optimization 
(PSO) and Simulated Annealing (SA) recorded 
ENS values of 10.2 MWh and 10.8 MWh, 
respectively. The ANN-assisted GA achieved 9.6 
MWh, closely matching GA’s performance. These 
results confirm that GA and ANN-assisted GA are 
the most effective in preserving load continuity 
under constrained supply conditions. 

 
Figure 6: Energy Not Supplied (ENS) across  

Supply Levels 
  As shown in Figure 6, the baseline 
heuristic exhibited a steep rise in Energy Not 
Supplied (ENS), reaching 12.4 MWh at 50% 
supply. Both the Genetic Algorithm (GA) and 
ANN-assisted GA consistently delivered the 
lowest ENS values, remaining below 10 MWh 
even under severe shortages. Particle Swarm 
Optimization (PSO) and Simulated Annealing (SA) 
performed better than the baseline but were 
inferior to GA and ANN-assisted GA. These 
results indicate that GA’s priority-sensitive 
allocation, combined with ETAP-informed loss 
adjustment, effectively minimized unsupplied 
energy, while the ANN-assisted GA preserved this 
performance with significantly improved 
computational efficiency. 
 
Satisfaction Index (SI) 
  At 50% supply, the baseline heuristic 
produced a Satisfaction Index (SI) of 0.52. The 
Genetic Algorithm (GA) achieved 0.66, PSO 0.61, 
Simulated Annealing (SA) 0.59, and ANN-assisted 
GA 0.65. These results indicate that GA-based 
allocations consistently satisfied a higher 
proportion of weighted demand, particularly for 
critical loads, outperforming both the baseline 
heuristic and alternative optimization algorithms 

 
Figure 7: Satisfaction Index (SI) across Supply 
Levels 
 
  As shown in Figure 7, the baseline 
heuristic exhibited a sharp decline in Satisfaction 
Index (SI), dropping to 0.52 at 50% supply, 
whereas the Genetic Algorithm (GA) maintained 
the highest SI of 0.66, closely followed by ANN-
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assisted GA at 0.65. PSO and SA trailed with SI 
values of 0.61 and 0.59, respectively. These 
results indicate that GA effectively maximized the 
weighted satisfaction of critical facilities while still 
allocating partial supply to lower-priority loads, a 
balance not achieved by the heuristic or 
alternative metaheuristic approaches. 
 
SAIFI (System Average Interruption Frequency 
Index) 
  At 50% supply, the baseline heuristic 
exhibited a System Average Interruption 
Frequency Index (SAIFI) of approximately 4.1 
interruptions per customer per year. The Genetic 
Algorithm (GA) reduced this value to 3.0, while 
ANN-assisted GA achieved 3.1, PSO 3.2, and SA 
3.4 interruptions per customer per year. These 
results demonstrate that GA and ANN-assisted 
GA not only improved allocation fairness and 
reliability metrics but also enhanced practical 
service continuity for end-users. 

 
Figure 8: SAIFI across Supply Levels 
 
  As shown in Figure 8, the baseline 
heuristic exhibited high SAIFI values, exceeding 4 
interruptions per customer per year. The Genetic 
Algorithm (GA) reduced SAIFI to 3.0, while ANN-
assisted GA achieved 3.1, both outperforming 
PSO at 3.2 and SA at 3.4 interruptions per 
customer per year. This indicates that GA’s 
preservation of critical load floors and equitable 
distribution of shortages directly reduced service 
interruptions in ETAP validation, demonstrating a 
tangible improvement in reliability performance. 
 

SAIDI (System Average Interruption Duration 
Index) 
  At 50% supply, the baseline heuristic 
exhibited a System Average Interruption Duration 
Index (SAIDI) of approximately 12 hours per 
customer per year. The Genetic Algorithm (GA) 
reduced SAIDI to 8.5 hours, while ANN-assisted 
GA achieved 8.7 hours, outperforming PSO at 9.2 
hours and SA at 9.8 hours per customer per year. 
These results indicate that GA significantly 
reduced outage durations, validating its reliability-
enhancing capability within ETAP simulations. 

 
Figure 9: SAIDI across Supply Levels 
 
  As illustrated in Figure 9, the baseline 
heuristic exhibited a SAIDI of 12 hours per 
customer per year. The Genetic Algorithm (GA) 
reduced this value to 8.5 hours, while ANN-
assisted GA achieved 8.7 hours, outperforming 
PSO at 9.2 and SA at 9.8 hours per customer per 
year. These results indicate that GA not only 
reduced the frequency of interruptions (SAIFI) but 
also shortened their duration (SAIDI), providing a 
holistic reliability improvement and highlighting the 
superiority of GA and ANN-assisted GA over 
conventional or heuristic methods. 
 
Reliability Summary 
  Overall, the Genetic Algorithm (GA) 
consistently outperformed Particle Swarm 
Optimization (PSO) and Simulated Annealing (SA) 
across all reliability and allocation metrics, 
including Satisfaction Index (SI), Energy Not 
Supplied (ENS), Gini coefficient, SAIFI, and 
SAIDI. The ANN-assisted GA closely matched 
GA’s performance while offering faster 
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convergence, making it highly suitable for real-
time deployment. In contrast, the baseline 
heuristic lagged significantly, particularly in ENS 
and SI, highlighting its inefficiency. These results 
demonstrate that the GA-based framework, 
validated through ETAP simulations, delivers 
tangible reliability improvements at the feeder 
level, ensuring both critical load preservation and 
equitable allocation across all load classes. 
 
CONCLUSION 
  This study successfully developed a 
MATLAB App Designer based Smart Grid Load 
Management System that integrates hybrid 
optimization techniques specifically GA, PSO, and 
GA–Greedy coupling to improve the fairness, 
responsiveness, and reliability of load demand 
response in distribution networks. The system 
provides a practical solution to conventional load-
shedding challenges by embedding socio-
economic priority indices, transformer-level 
constraints, and dynamic allocation logic within an 
intuitive GUI framework. The hybrid optimization 
architecture enabled faster convergence, reduced 
allocation errors, and improved supply fairness 
across multiple stress-level scenarios. The GUI 
further translated complex optimization functions 
into actionable decision-support tools for grid 
operators, allowing real-time adjustments, visual 
analytics, and automated reporting. The 
framework therefore demonstrates strong 
potential for integration into utility control rooms 
and can serve as a foundation for future 
advancements in AI-enabled smart grid 
management, including ANN-based prediction, 
adaptive reinforcement learning, and integration 
with IoT-based sensor data. 
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